{"title":"葡萄糖醛酸-1,6-内酯活环开环聚合产生的可化学循环的假多糖。","authors":"Brayan Rondon, Poom Ungolan, Lianqian Wu, Jia Niu","doi":"10.1021/jacs.4c06431","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization. Furthermore, we demonstrate that our approach is modular, as evidenced by tunable glass transition temperatures (<i>T</i><sub>g</sub>) and the ability to produce both amorphous and semicrystalline polymers by adjusting the monomer side chain structure. Lastly, we showcased the complete catalytic chemical recycling of these pseudo-polysaccharides back to the monomers. The flexibility of the polymerization and the recyclability of these pseudo-polysaccharides promote a sustainable circular economy while offering the potential to access polysaccharide-like materials with tunable thermal and mechanical properties.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"21868-21876"},"PeriodicalIF":15.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically Recyclable Pseudo-Polysaccharides from Living Ring-Opening Polymerization of Glucurono-1,6-lactones.\",\"authors\":\"Brayan Rondon, Poom Ungolan, Lianqian Wu, Jia Niu\",\"doi\":\"10.1021/jacs.4c06431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization. Furthermore, we demonstrate that our approach is modular, as evidenced by tunable glass transition temperatures (<i>T</i><sub>g</sub>) and the ability to produce both amorphous and semicrystalline polymers by adjusting the monomer side chain structure. Lastly, we showcased the complete catalytic chemical recycling of these pseudo-polysaccharides back to the monomers. The flexibility of the polymerization and the recyclability of these pseudo-polysaccharides promote a sustainable circular economy while offering the potential to access polysaccharide-like materials with tunable thermal and mechanical properties.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"21868-21876\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c06431\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemically Recyclable Pseudo-Polysaccharides from Living Ring-Opening Polymerization of Glucurono-1,6-lactones.
Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization. Furthermore, we demonstrate that our approach is modular, as evidenced by tunable glass transition temperatures (Tg) and the ability to produce both amorphous and semicrystalline polymers by adjusting the monomer side chain structure. Lastly, we showcased the complete catalytic chemical recycling of these pseudo-polysaccharides back to the monomers. The flexibility of the polymerization and the recyclability of these pseudo-polysaccharides promote a sustainable circular economy while offering the potential to access polysaccharide-like materials with tunable thermal and mechanical properties.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.