有界域中临界 SQG 的全局正则性

IF 3.1 1区 数学 Q1 MATHEMATICS
Peter Constantin, Mihaela Ignatova, Quoc-Hung Nguyen
{"title":"有界域中临界 SQG 的全局正则性","authors":"Peter Constantin,&nbsp;Mihaela Ignatova,&nbsp;Quoc-Hung Nguyen","doi":"10.1002/cpa.22221","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence and uniqueness of global smooth solutions of the critical dissipative SQG equation in bounded domains in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math>. We introduce a new methodology of transforming the single nonlocal nonlinear evolution equation in a bounded domain into an interacting system of extended nonlocal nonlinear evolution equations in the whole space. The proof then uses the method of the nonlinear maximum principle for nonlocal operators in the extended system.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 1","pages":"3-59"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global regularity for critical SQG in bounded domains\",\"authors\":\"Peter Constantin,&nbsp;Mihaela Ignatova,&nbsp;Quoc-Hung Nguyen\",\"doi\":\"10.1002/cpa.22221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence and uniqueness of global smooth solutions of the critical dissipative SQG equation in bounded domains in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^2$</annotation>\\n </semantics></math>. We introduce a new methodology of transforming the single nonlocal nonlinear evolution equation in a bounded domain into an interacting system of extended nonlocal nonlinear evolution equations in the whole space. The proof then uses the method of the nonlinear maximum principle for nonlocal operators in the extended system.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"78 1\",\"pages\":\"3-59\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22221\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22221","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了有界域中临界耗散 SQG 方程全局平稳解的存在性和唯一性。我们引入了一种新方法,将有界域中的单一非局部非线性演化方程转化为整个空间中的扩展非局部非线性演化方程的相互作用系统。然后利用扩展系统中的非局部算子的非线性最大原理方法进行证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global regularity for critical SQG in bounded domains

We prove the existence and uniqueness of global smooth solutions of the critical dissipative SQG equation in bounded domains in R 2 $\mathbb {R}^2$ . We introduce a new methodology of transforming the single nonlocal nonlinear evolution equation in a bounded domain into an interacting system of extended nonlocal nonlinear evolution equations in the whole space. The proof then uses the method of the nonlinear maximum principle for nonlocal operators in the extended system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信