{"title":"确定 BAF60b 是饮食诱发脂肪肝的染色质重塑检查点","authors":"Jing Zhong, Xiuyu Ji, Yali Zhao, Yihe Jia, Churui Song, Jinghuan Lv, Yuying Chen, Yanping Zhou, Xue Lv, Zhuoyin Yang, Zheyu Zhang, Qiyao Xu, Weihong Wang, Haiyan Chen, Aoyuan Cui, Yu Li, Zhuo-Xian Meng","doi":"10.2337/db24-0002","DOIUrl":null,"url":null,"abstract":"Overnutrition has gradually become the primary causative factor of nonalcoholic fatty liver disease (NAFLD). However, how nutritional signals are integrated to orchestrate the transcriptional programs important for NAFLD progression remains poorly understood. Here, we identified hepatic BAF60b as a lipid-sensitive subunit of the switch/sucrose-nonfermentable (SWI/SNF) chromatin-remodeling complex and is negatively associated with liver steatosis in mice and humans. Hepatic BAF60b deficiency promotes high-fat diet (HFD)-induced liver steatosis in mice, while transgenic expression of BAF60b in the liver attenuates HFD-induced obesity and NAFLD, both accompanied by a marked regulation of PPARγ expression. Mechanistically, through motif analysis of liver ATAC-Seq and multiple validation experiments, we identified CCAAT/enhancer-binding protein β (C/EBPβ) as the transcription factor that interacts with BAF60b to suppress PPARγ gene expression, thereby controlling hepatic lipid accumulation and NAFLD progression. This work uncovers hepatic BAF60b as a negative regulator of liver steatosis through C/EBPβ dependent chromatin remodeling.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"17 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of BAF60b as a chromatin remodeling checkpoint of diet-induced fatty liver disease\",\"authors\":\"Jing Zhong, Xiuyu Ji, Yali Zhao, Yihe Jia, Churui Song, Jinghuan Lv, Yuying Chen, Yanping Zhou, Xue Lv, Zhuoyin Yang, Zheyu Zhang, Qiyao Xu, Weihong Wang, Haiyan Chen, Aoyuan Cui, Yu Li, Zhuo-Xian Meng\",\"doi\":\"10.2337/db24-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overnutrition has gradually become the primary causative factor of nonalcoholic fatty liver disease (NAFLD). However, how nutritional signals are integrated to orchestrate the transcriptional programs important for NAFLD progression remains poorly understood. Here, we identified hepatic BAF60b as a lipid-sensitive subunit of the switch/sucrose-nonfermentable (SWI/SNF) chromatin-remodeling complex and is negatively associated with liver steatosis in mice and humans. Hepatic BAF60b deficiency promotes high-fat diet (HFD)-induced liver steatosis in mice, while transgenic expression of BAF60b in the liver attenuates HFD-induced obesity and NAFLD, both accompanied by a marked regulation of PPARγ expression. Mechanistically, through motif analysis of liver ATAC-Seq and multiple validation experiments, we identified CCAAT/enhancer-binding protein β (C/EBPβ) as the transcription factor that interacts with BAF60b to suppress PPARγ gene expression, thereby controlling hepatic lipid accumulation and NAFLD progression. This work uncovers hepatic BAF60b as a negative regulator of liver steatosis through C/EBPβ dependent chromatin remodeling.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db24-0002\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Identification of BAF60b as a chromatin remodeling checkpoint of diet-induced fatty liver disease
Overnutrition has gradually become the primary causative factor of nonalcoholic fatty liver disease (NAFLD). However, how nutritional signals are integrated to orchestrate the transcriptional programs important for NAFLD progression remains poorly understood. Here, we identified hepatic BAF60b as a lipid-sensitive subunit of the switch/sucrose-nonfermentable (SWI/SNF) chromatin-remodeling complex and is negatively associated with liver steatosis in mice and humans. Hepatic BAF60b deficiency promotes high-fat diet (HFD)-induced liver steatosis in mice, while transgenic expression of BAF60b in the liver attenuates HFD-induced obesity and NAFLD, both accompanied by a marked regulation of PPARγ expression. Mechanistically, through motif analysis of liver ATAC-Seq and multiple validation experiments, we identified CCAAT/enhancer-binding protein β (C/EBPβ) as the transcription factor that interacts with BAF60b to suppress PPARγ gene expression, thereby controlling hepatic lipid accumulation and NAFLD progression. This work uncovers hepatic BAF60b as a negative regulator of liver steatosis through C/EBPβ dependent chromatin remodeling.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.