Yang Yang, Wenming Xu, Anguo Gao, Qingshan Yang, Yuqing Gao
{"title":"基于车桥相互作用同步统计力矩理论的桥梁损伤识别","authors":"Yang Yang, Wenming Xu, Anguo Gao, Qingshan Yang, Yuqing Gao","doi":"10.1111/mice.13298","DOIUrl":null,"url":null,"abstract":"Considering the weak noise resistance and low identification efficiency of traditional bridge damage identification methods, a data-driven approach based on synchronous statistical moment theory and vehicle–bridge interaction vibration theory is proposed. This method involves two main steps. First, a two-axle test vehicle is used to collect acceleration response signals synchronously from adjacent designated measurement points while stationary. This operation is repeated to calculate the second-order statistical moment curvature (SOSMC) difference of entire bridge points corresponding signals in different states. By comparing with the reference value, the preliminary damage location of the bridge can be obtained. Second, the first-order modal shape curve is constructed using the second-order statistical moment (SOSM). The refined identification of bridge damage is then based on an improved direct stiffness back calculation of the bridge's stiffness. This article proposes the synchronization theory for the first time and combines it with the statistical moment clustering method, forming an innovative approach to obtaining structural vibration modes. The effectiveness of this method has been well validated through numerical simulations with different parameters and on-site bridge tests. The research results indicate that SOSMC indicators have better noise resistance and higher recognition efficiency in identifying damage locations, compared to modal curvature and flexibility curvature indicators. Additionally, compared to transfer rate and random subspace methods, the SOSM method results in smaller error and higher identification efficiency.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"24 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction\",\"authors\":\"Yang Yang, Wenming Xu, Anguo Gao, Qingshan Yang, Yuqing Gao\",\"doi\":\"10.1111/mice.13298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the weak noise resistance and low identification efficiency of traditional bridge damage identification methods, a data-driven approach based on synchronous statistical moment theory and vehicle–bridge interaction vibration theory is proposed. This method involves two main steps. First, a two-axle test vehicle is used to collect acceleration response signals synchronously from adjacent designated measurement points while stationary. This operation is repeated to calculate the second-order statistical moment curvature (SOSMC) difference of entire bridge points corresponding signals in different states. By comparing with the reference value, the preliminary damage location of the bridge can be obtained. Second, the first-order modal shape curve is constructed using the second-order statistical moment (SOSM). The refined identification of bridge damage is then based on an improved direct stiffness back calculation of the bridge's stiffness. This article proposes the synchronization theory for the first time and combines it with the statistical moment clustering method, forming an innovative approach to obtaining structural vibration modes. The effectiveness of this method has been well validated through numerical simulations with different parameters and on-site bridge tests. The research results indicate that SOSMC indicators have better noise resistance and higher recognition efficiency in identifying damage locations, compared to modal curvature and flexibility curvature indicators. Additionally, compared to transfer rate and random subspace methods, the SOSM method results in smaller error and higher identification efficiency.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13298\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13298","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction
Considering the weak noise resistance and low identification efficiency of traditional bridge damage identification methods, a data-driven approach based on synchronous statistical moment theory and vehicle–bridge interaction vibration theory is proposed. This method involves two main steps. First, a two-axle test vehicle is used to collect acceleration response signals synchronously from adjacent designated measurement points while stationary. This operation is repeated to calculate the second-order statistical moment curvature (SOSMC) difference of entire bridge points corresponding signals in different states. By comparing with the reference value, the preliminary damage location of the bridge can be obtained. Second, the first-order modal shape curve is constructed using the second-order statistical moment (SOSM). The refined identification of bridge damage is then based on an improved direct stiffness back calculation of the bridge's stiffness. This article proposes the synchronization theory for the first time and combines it with the statistical moment clustering method, forming an innovative approach to obtaining structural vibration modes. The effectiveness of this method has been well validated through numerical simulations with different parameters and on-site bridge tests. The research results indicate that SOSMC indicators have better noise resistance and higher recognition efficiency in identifying damage locations, compared to modal curvature and flexibility curvature indicators. Additionally, compared to transfer rate and random subspace methods, the SOSM method results in smaller error and higher identification efficiency.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.