存在噪声时几何量子机器学习中的对称性破坏

Cenk Tüysüz, Su Yeon Chang, Maria Demidik, Karl Jansen, Sofia Vallecorsa, Michele Grossi
{"title":"存在噪声时几何量子机器学习中的对称性破坏","authors":"Cenk Tüysüz, Su Yeon Chang, Maria Demidik, Karl Jansen, Sofia Vallecorsa, Michele Grossi","doi":"10.1103/prxquantum.5.030314","DOIUrl":null,"url":null,"abstract":"Geometric quantum machine learning based on equivariant quantum neural networks (EQNNs) recently appeared as a promising direction in quantum machine learning. Despite encouraging progress, studies are still limited to theory, and the role of hardware noise in EQNN training has never been explored. This work studies the behavior of EQNN models in the presence of noise. We show that certain EQNN models can preserve equivariance under Pauli channels, while this is not possible under the amplitude damping channel. We claim that the symmetry breaks linearly in the number of layers and noise strength. We support our claims with numerical data from simulations as well as hardware up to 64 qubits. Furthermore, we provide strategies to enhance the symmetry protection of EQNN models in the presence of noise.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry Breaking in Geometric Quantum Machine Learning in the Presence of Noise\",\"authors\":\"Cenk Tüysüz, Su Yeon Chang, Maria Demidik, Karl Jansen, Sofia Vallecorsa, Michele Grossi\",\"doi\":\"10.1103/prxquantum.5.030314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric quantum machine learning based on equivariant quantum neural networks (EQNNs) recently appeared as a promising direction in quantum machine learning. Despite encouraging progress, studies are still limited to theory, and the role of hardware noise in EQNN training has never been explored. This work studies the behavior of EQNN models in the presence of noise. We show that certain EQNN models can preserve equivariance under Pauli channels, while this is not possible under the amplitude damping channel. We claim that the symmetry breaks linearly in the number of layers and noise strength. We support our claims with numerical data from simulations as well as hardware up to 64 qubits. Furthermore, we provide strategies to enhance the symmetry protection of EQNN models in the presence of noise.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于等变量子神经网络(EQNN)的几何量子机器学习最近成为量子机器学习的一个有前途的方向。尽管取得了令人鼓舞的进展,但相关研究仍局限于理论层面,从未探讨过硬件噪声在 EQNN 训练中的作用。这项工作研究了 EQNN 模型在噪声存在时的行为。我们表明,某些 EQNN 模型在保利通道下可以保持等差关系,而在振幅阻尼通道下则无法做到这一点。我们声称,对称性会随着层数和噪声强度的增加而线性破坏。我们用模拟的数值数据以及高达 64 量子位的硬件来支持我们的说法。此外,我们还提供了在存在噪声时加强 EQNN 模型对称性保护的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Symmetry Breaking in Geometric Quantum Machine Learning in the Presence of Noise

Symmetry Breaking in Geometric Quantum Machine Learning in the Presence of Noise
Geometric quantum machine learning based on equivariant quantum neural networks (EQNNs) recently appeared as a promising direction in quantum machine learning. Despite encouraging progress, studies are still limited to theory, and the role of hardware noise in EQNN training has never been explored. This work studies the behavior of EQNN models in the presence of noise. We show that certain EQNN models can preserve equivariance under Pauli channels, while this is not possible under the amplitude damping channel. We claim that the symmetry breaks linearly in the number of layers and noise strength. We support our claims with numerical data from simulations as well as hardware up to 64 qubits. Furthermore, we provide strategies to enhance the symmetry protection of EQNN models in the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信