{"title":"设施选址问题:利用从属关系建立联合干扰模型","authors":"Vishwakant Malladi, Kumar Muthuraman","doi":"10.1287/trsc.2023.0103","DOIUrl":null,"url":null,"abstract":"We study the facility location problem with disruptions where the objective is to choose a set of locations that minimizes the sum of expected servicing and setup costs. Disruptions can affect multiple locations simultaneously and are caused by multiple factors like geography, supply chain characteristics, politics, and ownership. Accounting for the various factors when modeling disruptions is challenging due to a large number of required parameters, the lack of calibration methodologies, the sparsity of disruption data, and the number of scenarios to be considered in the optimization. Because of these reasons, existing models neglect dependence or prespecify the dependence structures. Using partially subordinated Markov chains, we present a comprehensive approach that starts from disruption data, models dependencies, calibrates the disruption model, and optimizes location choices. We construct a metric and a calibration algorithm that learns from the data the strength of dependence, the number of necessary factors (subordinators), and the locations each subordinator affects. We prove that our calibration approach yields consistent estimates of the model parameters. Then, we introduce a variant of the standard approach to the underlying optimization problem, which leverages partially subordinated Markov chains to solve it quickly and precisely. Finally, we demonstrate the efficacy of our approach using twelve different disruption data sets. Our calibrated parameters are robust, and our optimization algorithm performs better than the simulation-based algorithm. The solutions from our model for disruptions have lower costs than those from other disruption models. Our approach allows for better modeling of disruptions from historical data and can be adapted to other problems in logistics, like the hub location, capacitated facility location, and so on., with joint disruptions.Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0103 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"65 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facility Location Problem: Modeling Joint Disruptions Using Subordination\",\"authors\":\"Vishwakant Malladi, Kumar Muthuraman\",\"doi\":\"10.1287/trsc.2023.0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the facility location problem with disruptions where the objective is to choose a set of locations that minimizes the sum of expected servicing and setup costs. Disruptions can affect multiple locations simultaneously and are caused by multiple factors like geography, supply chain characteristics, politics, and ownership. Accounting for the various factors when modeling disruptions is challenging due to a large number of required parameters, the lack of calibration methodologies, the sparsity of disruption data, and the number of scenarios to be considered in the optimization. Because of these reasons, existing models neglect dependence or prespecify the dependence structures. Using partially subordinated Markov chains, we present a comprehensive approach that starts from disruption data, models dependencies, calibrates the disruption model, and optimizes location choices. We construct a metric and a calibration algorithm that learns from the data the strength of dependence, the number of necessary factors (subordinators), and the locations each subordinator affects. We prove that our calibration approach yields consistent estimates of the model parameters. Then, we introduce a variant of the standard approach to the underlying optimization problem, which leverages partially subordinated Markov chains to solve it quickly and precisely. Finally, we demonstrate the efficacy of our approach using twelve different disruption data sets. Our calibrated parameters are robust, and our optimization algorithm performs better than the simulation-based algorithm. The solutions from our model for disruptions have lower costs than those from other disruption models. Our approach allows for better modeling of disruptions from historical data and can be adapted to other problems in logistics, like the hub location, capacitated facility location, and so on., with joint disruptions.Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0103 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2023.0103\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2023.0103","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Facility Location Problem: Modeling Joint Disruptions Using Subordination
We study the facility location problem with disruptions where the objective is to choose a set of locations that minimizes the sum of expected servicing and setup costs. Disruptions can affect multiple locations simultaneously and are caused by multiple factors like geography, supply chain characteristics, politics, and ownership. Accounting for the various factors when modeling disruptions is challenging due to a large number of required parameters, the lack of calibration methodologies, the sparsity of disruption data, and the number of scenarios to be considered in the optimization. Because of these reasons, existing models neglect dependence or prespecify the dependence structures. Using partially subordinated Markov chains, we present a comprehensive approach that starts from disruption data, models dependencies, calibrates the disruption model, and optimizes location choices. We construct a metric and a calibration algorithm that learns from the data the strength of dependence, the number of necessary factors (subordinators), and the locations each subordinator affects. We prove that our calibration approach yields consistent estimates of the model parameters. Then, we introduce a variant of the standard approach to the underlying optimization problem, which leverages partially subordinated Markov chains to solve it quickly and precisely. Finally, we demonstrate the efficacy of our approach using twelve different disruption data sets. Our calibrated parameters are robust, and our optimization algorithm performs better than the simulation-based algorithm. The solutions from our model for disruptions have lower costs than those from other disruption models. Our approach allows for better modeling of disruptions from historical data and can be adapted to other problems in logistics, like the hub location, capacitated facility location, and so on., with joint disruptions.Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0103 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.