{"title":"CNRBind:通过核苷酸和复杂网络信息中的显著位点识别小分子-RNA 结合位点","authors":"Lichao Zhang, Kang Xiao, Xueting Wang, Liang Kong","doi":"10.2174/0115748936296412240625111040","DOIUrl":null,"url":null,"abstract":"Background: Small molecule-RNA binding sites play a significant role in developing drugs for disease treatment. However, it is a challenge to propose accurate computational tools for identifying these binding sites. Method: In this study, an accurate prediction model named CNRBind was constructed by extracting site significant information from nucleotide and complex networks. We designed complex networks and calculated three topological structural parameters according to RNA tertiary structure. Acknowledging nucleotide interdependence, a sliding window was selected to integrate the influence of adjacent sites. Finally, the model was constructed using a random forest classifier. Results: Compared to the other computational tools, CNRBind was competitive and had excellent discriminative ability for metal ion-binding site prediction. Furthermore, statistic analysis revealed significant differences between CNRBind and existing methods. Additionally, CNRBind is a promising predictor in cases where experimental tertiary structure is unavailable. Conclusion: These results show that CNRBind is effective because of the proposed site significant information encoding strategy. The approach provides a reasonable supplement for biology researches. The dataset and resource codes can be accessed at: https://github.com/Kangxiaoneuq/CNRBind.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":"71 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNRBind: Small Molecule-RNA Binding Sites Recognition via Site Significant from Nucleotide and Complex Network Information\",\"authors\":\"Lichao Zhang, Kang Xiao, Xueting Wang, Liang Kong\",\"doi\":\"10.2174/0115748936296412240625111040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Small molecule-RNA binding sites play a significant role in developing drugs for disease treatment. However, it is a challenge to propose accurate computational tools for identifying these binding sites. Method: In this study, an accurate prediction model named CNRBind was constructed by extracting site significant information from nucleotide and complex networks. We designed complex networks and calculated three topological structural parameters according to RNA tertiary structure. Acknowledging nucleotide interdependence, a sliding window was selected to integrate the influence of adjacent sites. Finally, the model was constructed using a random forest classifier. Results: Compared to the other computational tools, CNRBind was competitive and had excellent discriminative ability for metal ion-binding site prediction. Furthermore, statistic analysis revealed significant differences between CNRBind and existing methods. Additionally, CNRBind is a promising predictor in cases where experimental tertiary structure is unavailable. Conclusion: These results show that CNRBind is effective because of the proposed site significant information encoding strategy. The approach provides a reasonable supplement for biology researches. The dataset and resource codes can be accessed at: https://github.com/Kangxiaoneuq/CNRBind.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936296412240625111040\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936296412240625111040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CNRBind: Small Molecule-RNA Binding Sites Recognition via Site Significant from Nucleotide and Complex Network Information
Background: Small molecule-RNA binding sites play a significant role in developing drugs for disease treatment. However, it is a challenge to propose accurate computational tools for identifying these binding sites. Method: In this study, an accurate prediction model named CNRBind was constructed by extracting site significant information from nucleotide and complex networks. We designed complex networks and calculated three topological structural parameters according to RNA tertiary structure. Acknowledging nucleotide interdependence, a sliding window was selected to integrate the influence of adjacent sites. Finally, the model was constructed using a random forest classifier. Results: Compared to the other computational tools, CNRBind was competitive and had excellent discriminative ability for metal ion-binding site prediction. Furthermore, statistic analysis revealed significant differences between CNRBind and existing methods. Additionally, CNRBind is a promising predictor in cases where experimental tertiary structure is unavailable. Conclusion: These results show that CNRBind is effective because of the proposed site significant information encoding strategy. The approach provides a reasonable supplement for biology researches. The dataset and resource codes can be accessed at: https://github.com/Kangxiaoneuq/CNRBind.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.