Xuan Dai , Pengfei Chen , Xin Wang , Junfeng Qian , Weiyou Zhou , Mingyang He
{"title":"利用含锰层状双氧化物合理设计双功能催化剂以高效氧化裂解 1,2-二醇","authors":"Xuan Dai , Pengfei Chen , Xin Wang , Junfeng Qian , Weiyou Zhou , Mingyang He","doi":"10.1039/d4cy00740a","DOIUrl":null,"url":null,"abstract":"<div><p>NiMgMn layered double hydroxide (LDO) has been rationally designed for the efficient oxidative cleavage of 1,2-diols, utilizing molecular oxygen exclusively as the oxidizing agent without the need for additives. This engineered NiMgMn-LDO contains catalytically active Mn<sup>3+</sup> species, which are stabilized by Ni<sup>2+</sup>. Additionally, it is endowed with numerous basic sites contributed by Mg species. These features bestow upon NiMgMn-LDO a dual functionality that significantly enhances its catalytic efficacy. Consequently, this catalyst demonstrates excellent catalytic prowess and robust tolerance in the aerobic oxidative cleavage of benzyl 1,2-diols.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 16","pages":"Pages 4697-4703"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of a bifunctional catalyst utilizing Mn-containing layered double oxide for the highly efficient oxidative cleavage of 1,2-diols†\",\"authors\":\"Xuan Dai , Pengfei Chen , Xin Wang , Junfeng Qian , Weiyou Zhou , Mingyang He\",\"doi\":\"10.1039/d4cy00740a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>NiMgMn layered double hydroxide (LDO) has been rationally designed for the efficient oxidative cleavage of 1,2-diols, utilizing molecular oxygen exclusively as the oxidizing agent without the need for additives. This engineered NiMgMn-LDO contains catalytically active Mn<sup>3+</sup> species, which are stabilized by Ni<sup>2+</sup>. Additionally, it is endowed with numerous basic sites contributed by Mg species. These features bestow upon NiMgMn-LDO a dual functionality that significantly enhances its catalytic efficacy. Consequently, this catalyst demonstrates excellent catalytic prowess and robust tolerance in the aerobic oxidative cleavage of benzyl 1,2-diols.</p></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"14 16\",\"pages\":\"Pages 4697-4703\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324003794\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003794","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rational design of a bifunctional catalyst utilizing Mn-containing layered double oxide for the highly efficient oxidative cleavage of 1,2-diols†
NiMgMn layered double hydroxide (LDO) has been rationally designed for the efficient oxidative cleavage of 1,2-diols, utilizing molecular oxygen exclusively as the oxidizing agent without the need for additives. This engineered NiMgMn-LDO contains catalytically active Mn3+ species, which are stabilized by Ni2+. Additionally, it is endowed with numerous basic sites contributed by Mg species. These features bestow upon NiMgMn-LDO a dual functionality that significantly enhances its catalytic efficacy. Consequently, this catalyst demonstrates excellent catalytic prowess and robust tolerance in the aerobic oxidative cleavage of benzyl 1,2-diols.
期刊介绍:
A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis.
Editor-in-chief: Bert Weckhuysen
Impact factor: 5.0
Time to first decision (peer reviewed only): 31 days