超越像素:图形过滤学习揭示肝癌成像的新维度。

Q2 Medicine
Yashbir Singh
{"title":"超越像素:图形过滤学习揭示肝癌成像的新维度。","authors":"Yashbir Singh","doi":"10.18632/oncotarget.28635","DOIUrl":null,"url":null,"abstract":"<p><p>This editorial explores the emerging role of Graph Filtration Learning (GFL) in revolutionizing Hepatocellular carcinoma (HCC) imaging analysis. As traditional pixel-based methods reach their limits, GFL offers a novel approach to capture complex topological features in medical images. By representing imaging data as graphs and leveraging persistent homology, GFL unveils new dimensions of information that were previously inaccessible. This paradigm shift holds promise for enhancing HCC diagnosis, treatment planning, and prognostication. We discuss the principles of GFL, its potential applications in HCC imaging, and the challenges in translating this innovative technique into clinical practice.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"532-534"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268443/pdf/","citationCount":"0","resultStr":"{\"title\":\"Beyond pixels: Graph filtration learning unveils new dimensions in hepatocellular carcinoma imaging.\",\"authors\":\"Yashbir Singh\",\"doi\":\"10.18632/oncotarget.28635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This editorial explores the emerging role of Graph Filtration Learning (GFL) in revolutionizing Hepatocellular carcinoma (HCC) imaging analysis. As traditional pixel-based methods reach their limits, GFL offers a novel approach to capture complex topological features in medical images. By representing imaging data as graphs and leveraging persistent homology, GFL unveils new dimensions of information that were previously inaccessible. This paradigm shift holds promise for enhancing HCC diagnosis, treatment planning, and prognostication. We discuss the principles of GFL, its potential applications in HCC imaging, and the challenges in translating this innovative technique into clinical practice.</p>\",\"PeriodicalId\":19499,\"journal\":{\"name\":\"Oncotarget\",\"volume\":\"15 \",\"pages\":\"532-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268443/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncotarget\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncotarget.28635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

这篇社论探讨了图形过滤学习(GFL)在彻底改变肝细胞癌(HCC)成像分析中的新兴作用。由于传统的基于像素的方法已达到极限,GFL 提供了一种捕捉医学图像中复杂拓扑特征的新方法。通过将成像数据表示为图形并利用持久同源性,GFL 揭示了以前无法获取的新的信息维度。这种模式的转变为提高 HCC 诊断、治疗规划和预后带来了希望。我们将讨论 GFL 的原理、其在 HCC 成像中的潜在应用,以及将这一创新技术转化为临床实践所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond pixels: Graph filtration learning unveils new dimensions in hepatocellular carcinoma imaging.

This editorial explores the emerging role of Graph Filtration Learning (GFL) in revolutionizing Hepatocellular carcinoma (HCC) imaging analysis. As traditional pixel-based methods reach their limits, GFL offers a novel approach to capture complex topological features in medical images. By representing imaging data as graphs and leveraging persistent homology, GFL unveils new dimensions of information that were previously inaccessible. This paradigm shift holds promise for enhancing HCC diagnosis, treatment planning, and prognostication. We discuss the principles of GFL, its potential applications in HCC imaging, and the challenges in translating this innovative technique into clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信