Ofer Isakov, Dina Marek-Yagel, Rotem Greenberg, Michal Naftali, Shay Ben-Shachar
{"title":"PANGEN:用于比较和创建诊断基因面板的在线平台。","authors":"Ofer Isakov, Dina Marek-Yagel, Rotem Greenberg, Michal Naftali, Shay Ben-Shachar","doi":"10.1093/database/baae065","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted gene panel sequencing is used to limit the search for causative genetic variants solely to genes with an established association with the phenotype. The design of gene panels is challenging due to the lack of consensus regarding phenotypic associations for some genes, which results in high variation in gene composition for the same panel offered by different laboratories. We developed PANGEN, a platform that provides a centralized resource for gene panel information, with the ability to compare and generate new intelligent diagnostic panels. Gene-phenotype associations were collected from 12 public and commercial sources (Blueprint, Cegat, Centogene, ClinGen, Fulgent, GeneDx, Health in Code, Human Phenotype Ontology, Invitae, PanelApp, Prevention genetics, and Pronto diagnostics). Gene-phenotype associations are categorized into tiers according to categories derived from the original source panel. Pairwise panel similarity was calculated by dividing the number of common genes by the total number of genes in both panels. Regions with extreme guanine-cytosine (GC) content were collected from the Genome in a Bottle stratifications dataset, and putative genomic duplications were retrieved from the University of Santa Cruz database. Overall, 1533 panels, 9759 phenotypes, and 6979 genes were collected. The platform provides an interface to (i) explore and compare collected panels, (ii) find similar panels, (iii) identify genes with high GC content or duplication levels, (iv) generate gene panels by combining panels from various sources, and (v) stratify a generated panel into genes with a strong phenotype association ('core') and those with a weaker association ('extended'). The presented platform represents a unique resource for gene panel exploration and comparison that facilitates the generation of tailored diagnostic panels through a public online web server. Database URL: https://c-gc.shinyapps.io/PANGEN/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265858/pdf/","citationCount":"0","resultStr":"{\"title\":\"PANGEN: an online platform for the comparison and creation of diagnostic gene panels.\",\"authors\":\"Ofer Isakov, Dina Marek-Yagel, Rotem Greenberg, Michal Naftali, Shay Ben-Shachar\",\"doi\":\"10.1093/database/baae065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeted gene panel sequencing is used to limit the search for causative genetic variants solely to genes with an established association with the phenotype. The design of gene panels is challenging due to the lack of consensus regarding phenotypic associations for some genes, which results in high variation in gene composition for the same panel offered by different laboratories. We developed PANGEN, a platform that provides a centralized resource for gene panel information, with the ability to compare and generate new intelligent diagnostic panels. Gene-phenotype associations were collected from 12 public and commercial sources (Blueprint, Cegat, Centogene, ClinGen, Fulgent, GeneDx, Health in Code, Human Phenotype Ontology, Invitae, PanelApp, Prevention genetics, and Pronto diagnostics). Gene-phenotype associations are categorized into tiers according to categories derived from the original source panel. Pairwise panel similarity was calculated by dividing the number of common genes by the total number of genes in both panels. Regions with extreme guanine-cytosine (GC) content were collected from the Genome in a Bottle stratifications dataset, and putative genomic duplications were retrieved from the University of Santa Cruz database. Overall, 1533 panels, 9759 phenotypes, and 6979 genes were collected. The platform provides an interface to (i) explore and compare collected panels, (ii) find similar panels, (iii) identify genes with high GC content or duplication levels, (iv) generate gene panels by combining panels from various sources, and (v) stratify a generated panel into genes with a strong phenotype association ('core') and those with a weaker association ('extended'). The presented platform represents a unique resource for gene panel exploration and comparison that facilitates the generation of tailored diagnostic panels through a public online web server. Database URL: https://c-gc.shinyapps.io/PANGEN/.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2024 \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baae065\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
PANGEN: an online platform for the comparison and creation of diagnostic gene panels.
Targeted gene panel sequencing is used to limit the search for causative genetic variants solely to genes with an established association with the phenotype. The design of gene panels is challenging due to the lack of consensus regarding phenotypic associations for some genes, which results in high variation in gene composition for the same panel offered by different laboratories. We developed PANGEN, a platform that provides a centralized resource for gene panel information, with the ability to compare and generate new intelligent diagnostic panels. Gene-phenotype associations were collected from 12 public and commercial sources (Blueprint, Cegat, Centogene, ClinGen, Fulgent, GeneDx, Health in Code, Human Phenotype Ontology, Invitae, PanelApp, Prevention genetics, and Pronto diagnostics). Gene-phenotype associations are categorized into tiers according to categories derived from the original source panel. Pairwise panel similarity was calculated by dividing the number of common genes by the total number of genes in both panels. Regions with extreme guanine-cytosine (GC) content were collected from the Genome in a Bottle stratifications dataset, and putative genomic duplications were retrieved from the University of Santa Cruz database. Overall, 1533 panels, 9759 phenotypes, and 6979 genes were collected. The platform provides an interface to (i) explore and compare collected panels, (ii) find similar panels, (iii) identify genes with high GC content or duplication levels, (iv) generate gene panels by combining panels from various sources, and (v) stratify a generated panel into genes with a strong phenotype association ('core') and those with a weaker association ('extended'). The presented platform represents a unique resource for gene panel exploration and comparison that facilitates the generation of tailored diagnostic panels through a public online web server. Database URL: https://c-gc.shinyapps.io/PANGEN/.
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.