大肠杆菌不计算单分子。

ArXiv Pub Date : 2024-11-27
Henry H Mattingly, Keita Kamino, Jude Ong, Rafaela Kottou, Thierry Emonet, Benjamin B Machta
{"title":"大肠杆菌不计算单分子。","authors":"Henry H Mattingly, Keita Kamino, Jude Ong, Rafaela Kottou, Thierry Emonet, Benjamin B Machta","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding biological functions requires identifying the physical limits and system-specific constraints that have shaped them. In <i>Escherichia coli</i> chemotaxis, gradient-climbing speed is information-limited, bounded by the sensory information they acquire from real-time measurements of their environment. However, it remains unclear what limits this information. Past work conjectured that <i>E. coli</i>'s chemosensing is limited by the physics of molecule arrivals at their sensors. Here, we derive the physical limit on behaviorally-relevant information, and then perform single-cell experiments to quantify how much information <i>E. coli</i>'s signaling pathway encodes. We find that <i>E. coli</i> encode two orders of magnitude less information than the physical limit due to their stochastic signal processing. Thus, system-specific constraints, rather than the physical limit, have shaped the evolution of this canonical sensory-motor behavior.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemotaxing <i>E. coli</i> do not count single molecules.\",\"authors\":\"Henry H Mattingly, Keita Kamino, Jude Ong, Rafaela Kottou, Thierry Emonet, Benjamin B Machta\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding biological functions requires identifying the physical limits and system-specific constraints that have shaped them. In <i>Escherichia coli</i> chemotaxis, gradient-climbing speed is information-limited, bounded by the sensory information they acquire from real-time measurements of their environment. However, it remains unclear what limits this information. Past work conjectured that <i>E. coli</i>'s chemosensing is limited by the physics of molecule arrivals at their sensors. Here, we derive the physical limit on behaviorally-relevant information, and then perform single-cell experiments to quantify how much information <i>E. coli</i>'s signaling pathway encodes. We find that <i>E. coli</i> encode two orders of magnitude less information than the physical limit due to their stochastic signal processing. Thus, system-specific constraints, rather than the physical limit, have shaped the evolution of this canonical sensory-motor behavior.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物必须进行感官运动行为才能生存。是什么界限或约束限制了行为表现?之前,我们发现大肠杆菌的化学趋向爬行速度接近于它们从化学环境中获取的有限信息所设定的界限。在这里,我们想知道是什么限制了它们的感官准确性。过去的理论分析表明,单分子到达的随机性为化学感应的精确性设定了基本限制。虽然有人认为细菌接近这一极限,但缺乏直接证据。在这里,我们利用信息论和定量实验发现,大肠杆菌的化学传感不受粒子计数物理学的限制。首先,我们推导出任何传感器能够获得的有关化学浓度变化的行为相关信息的物理极限,假设到达传感器的每个分子都被记录下来。然后,我们推导并测量了大肠杆菌信号通路在趋化过程中编码的信息量。我们发现,大肠杆菌编码的信息量比理想传感器少两个数量级,理想传感器只受到粒子到达时的射频噪声的限制。这些结果有力地表明,除了粒子到达噪声之外,其他限制因素也限制了大肠杆菌的感官保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemotaxing E. coli do not count single molecules.

Understanding biological functions requires identifying the physical limits and system-specific constraints that have shaped them. In Escherichia coli chemotaxis, gradient-climbing speed is information-limited, bounded by the sensory information they acquire from real-time measurements of their environment. However, it remains unclear what limits this information. Past work conjectured that E. coli's chemosensing is limited by the physics of molecule arrivals at their sensors. Here, we derive the physical limit on behaviorally-relevant information, and then perform single-cell experiments to quantify how much information E. coli's signaling pathway encodes. We find that E. coli encode two orders of magnitude less information than the physical limit due to their stochastic signal processing. Thus, system-specific constraints, rather than the physical limit, have shaped the evolution of this canonical sensory-motor behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信