梓醇通过抑制 microRNA-101-3p 上调 FOS 相关抗原 2 来改善糖尿病小鼠的胰岛素抵抗和脂质代谢紊乱。

IF 2 4区 医学 Q3 PHYSIOLOGY
Journal of Physiology and Pharmacology Pub Date : 2024-06-01 Epub Date: 2024-07-18 DOI:10.26402/jpp.2024.3.05
C F Xu, Q Cao, B F Zhang
{"title":"梓醇通过抑制 microRNA-101-3p 上调 FOS 相关抗原 2 来改善糖尿病小鼠的胰岛素抵抗和脂质代谢紊乱。","authors":"C F Xu, Q Cao, B F Zhang","doi":"10.26402/jpp.2024.3.05","DOIUrl":null,"url":null,"abstract":"<p><p>Disorders of glucose and lipid metabolism are important causes of type 2 diabetes mellitus (T2DM). Defining the molecular mechanisms of metabolic disorders and exploring drug targets are key to the treatment of T2DM. The study discovered the effects of catalpol on insulin resistance (IR) and lipid metabolism disorder (LMD) in type 2 diabetes mellitus (T2DM). A T2DM mouse model was established by a high-fat diet and a single intraperitoneal injection of streptozotocin. and injected with catalpol at 10 mg/kg for 12 weeks, and the lentiviral vector of miR-101-3p or Fos-related antigen 2 (FOSL2) expression was interfered with intravenously mouse insulin resistance (IR) and lipid metabolism disorder (LMD)-related indices were then measured. Pancreatic histopathology was observed by hematoxylin and eosin (HE) staining and TUNEL staining. The miR-101-3p and FOSL2 were detected by RT-qPCR or Western blot. In results: catalpol improved IR and LMD (both P<0.05) in diabetic mice, and alleviated the histopathological changes in the pancreas. miR-101-3p was upregulated (P<0.05), and FOSL2 was downregulated (P<0.05) in T2DM mice, while catalpol rescued their expression pattern (both P<0.05). The miR-101-3p targeted FOSL2. Down-regulating miR-101-3p or up-regulating FOSL2 improved IR and LMD (all P<0.05) in diabetic mice, and alleviated pancreatic histopathological changes. Overexpressing miR-101-3p or suppressing FOSL2 weakened the ameliorative effects of catalpol in T2DM mice (all P<0.05). We conclude that catalpol improves IR and LMD in diabetic mice by inhibiting miR-101-3p to up-regulate FOSL2.</p>","PeriodicalId":50089,"journal":{"name":"Journal of Physiology and Pharmacology","volume":"75 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalpol improves insulin resistance and lipid metabolism disorder in diabetic mice by inhibiting microRNA-101-3p to up-regulate FOS-related antigen 2.\",\"authors\":\"C F Xu, Q Cao, B F Zhang\",\"doi\":\"10.26402/jpp.2024.3.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disorders of glucose and lipid metabolism are important causes of type 2 diabetes mellitus (T2DM). Defining the molecular mechanisms of metabolic disorders and exploring drug targets are key to the treatment of T2DM. The study discovered the effects of catalpol on insulin resistance (IR) and lipid metabolism disorder (LMD) in type 2 diabetes mellitus (T2DM). A T2DM mouse model was established by a high-fat diet and a single intraperitoneal injection of streptozotocin. and injected with catalpol at 10 mg/kg for 12 weeks, and the lentiviral vector of miR-101-3p or Fos-related antigen 2 (FOSL2) expression was interfered with intravenously mouse insulin resistance (IR) and lipid metabolism disorder (LMD)-related indices were then measured. Pancreatic histopathology was observed by hematoxylin and eosin (HE) staining and TUNEL staining. The miR-101-3p and FOSL2 were detected by RT-qPCR or Western blot. In results: catalpol improved IR and LMD (both P<0.05) in diabetic mice, and alleviated the histopathological changes in the pancreas. miR-101-3p was upregulated (P<0.05), and FOSL2 was downregulated (P<0.05) in T2DM mice, while catalpol rescued their expression pattern (both P<0.05). The miR-101-3p targeted FOSL2. Down-regulating miR-101-3p or up-regulating FOSL2 improved IR and LMD (all P<0.05) in diabetic mice, and alleviated pancreatic histopathological changes. Overexpressing miR-101-3p or suppressing FOSL2 weakened the ameliorative effects of catalpol in T2DM mice (all P<0.05). We conclude that catalpol improves IR and LMD in diabetic mice by inhibiting miR-101-3p to up-regulate FOSL2.</p>\",\"PeriodicalId\":50089,\"journal\":{\"name\":\"Journal of Physiology and Pharmacology\",\"volume\":\"75 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26402/jpp.2024.3.05\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26402/jpp.2024.3.05","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

葡萄糖和脂质代谢紊乱是导致 2 型糖尿病(T2DM)的重要原因。明确代谢紊乱的分子机制和探索药物靶点是治疗 T2DM 的关键。该研究发现了梓醇对2型糖尿病(T2DM)中胰岛素抵抗(IR)和脂质代谢紊乱(LMD)的影响。该研究通过高脂饮食和单次腹腔注射链脲佐菌素建立了T2DM小鼠模型,并以10毫克/千克的剂量注射梓醇12周,然后静脉注射干扰miR-101-3p或Fos相关抗原2(FOSL2)表达的慢病毒载体,测定小鼠胰岛素抵抗(IR)和脂代谢紊乱(LMD)相关指标。通过苏木精和伊红(HE)染色和 TUNEL 染色观察胰腺组织病理学。通过 RT-qPCR 或 Western 印迹检测 miR-101-3p 和 FOSL2。结果显示:梓酚改善了IR和LMD(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalpol improves insulin resistance and lipid metabolism disorder in diabetic mice by inhibiting microRNA-101-3p to up-regulate FOS-related antigen 2.

Disorders of glucose and lipid metabolism are important causes of type 2 diabetes mellitus (T2DM). Defining the molecular mechanisms of metabolic disorders and exploring drug targets are key to the treatment of T2DM. The study discovered the effects of catalpol on insulin resistance (IR) and lipid metabolism disorder (LMD) in type 2 diabetes mellitus (T2DM). A T2DM mouse model was established by a high-fat diet and a single intraperitoneal injection of streptozotocin. and injected with catalpol at 10 mg/kg for 12 weeks, and the lentiviral vector of miR-101-3p or Fos-related antigen 2 (FOSL2) expression was interfered with intravenously mouse insulin resistance (IR) and lipid metabolism disorder (LMD)-related indices were then measured. Pancreatic histopathology was observed by hematoxylin and eosin (HE) staining and TUNEL staining. The miR-101-3p and FOSL2 were detected by RT-qPCR or Western blot. In results: catalpol improved IR and LMD (both P<0.05) in diabetic mice, and alleviated the histopathological changes in the pancreas. miR-101-3p was upregulated (P<0.05), and FOSL2 was downregulated (P<0.05) in T2DM mice, while catalpol rescued their expression pattern (both P<0.05). The miR-101-3p targeted FOSL2. Down-regulating miR-101-3p or up-regulating FOSL2 improved IR and LMD (all P<0.05) in diabetic mice, and alleviated pancreatic histopathological changes. Overexpressing miR-101-3p or suppressing FOSL2 weakened the ameliorative effects of catalpol in T2DM mice (all P<0.05). We conclude that catalpol improves IR and LMD in diabetic mice by inhibiting miR-101-3p to up-regulate FOSL2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
22.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Physiology and Pharmacology publishes papers which fall within the range of basic and applied physiology, pathophysiology and pharmacology. The papers should illustrate new physiological or pharmacological mechanisms at the level of the cell membrane, single cells, tissues or organs. Clinical studies, that are of fundamental importance and have a direct bearing on the pathophysiology will also be considered. Letters related to articles published in The Journal with topics of general professional interest are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信