Naomi E Kramer, Jacob Siracusa, Hannah Xu, Lillie Barnett, Morgan C Finnerty, Tai L Guo, John J Wagner, Franklin E Leach, Brian S Cummings
{"title":"溴化阻燃剂六溴环十二烷导致小鼠血脂中多不饱和脂肪酸掺入量的系统性变化","authors":"Naomi E Kramer, Jacob Siracusa, Hannah Xu, Lillie Barnett, Morgan C Finnerty, Tai L Guo, John J Wagner, Franklin E Leach, Brian S Cummings","doi":"10.1093/toxsci/kfae094","DOIUrl":null,"url":null,"abstract":"<p><p>Brominated flame retardants are used in many household products to reduce flammability, but often leach into the surrounding environment over time. Hexabromocyclododecane (HBCD) is one brominated flame retardant detected in human blood across the world. HBCD exposure can result in neurological problems and altered lipid metabolism, but to date the two remain unlinked. As lipids constitute ∼50% of brain dry weight, lipid metabolism plays a critical role in neuronal function and homeostasis. To determine the effect of HBCD exposure on brain lipid metabolism, young adult male C57BL/6 mice were exposed to 1 mg/kg HBCD every 3 days for 28 days. Major lipid classes were found to change across brain regions, including the membrane glycerolipids phosphatidylcholine and phosphatidylethanolamine, and sphingolipids such as hexosylceramide. In addition, saturated, monounsaturated, and polyunsaturated fatty acids were enriched within brain lipid species. To understand the source of the brain lipidomic alterations, the blood and liver lipidomes and the cecal microbiome were evaluated. The liver and blood demonstrated changes amongst multiple lipid classes, including triacylglycerol suppression, as well as altered esterified fatty acid content. Significant alterations were also detected in the cecal microbiome, with decreases in the Firmicutes to Bacteriodetes ratio, changes in beta diversity, and pathway alterations associated with metabolic pathways and amino acid biosynthesis. These data demonstrate that HBCD can induce lipidomic alterations across brain regions and organs and supports a potential role of the microbiome in these alterations.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Brominated Flame Retardant Hexabromocyclododecane Causes Systemic Changes in Polyunsaturated Fatty Acid Incorporation in Mouse Lipids.\",\"authors\":\"Naomi E Kramer, Jacob Siracusa, Hannah Xu, Lillie Barnett, Morgan C Finnerty, Tai L Guo, John J Wagner, Franklin E Leach, Brian S Cummings\",\"doi\":\"10.1093/toxsci/kfae094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brominated flame retardants are used in many household products to reduce flammability, but often leach into the surrounding environment over time. Hexabromocyclododecane (HBCD) is one brominated flame retardant detected in human blood across the world. HBCD exposure can result in neurological problems and altered lipid metabolism, but to date the two remain unlinked. As lipids constitute ∼50% of brain dry weight, lipid metabolism plays a critical role in neuronal function and homeostasis. To determine the effect of HBCD exposure on brain lipid metabolism, young adult male C57BL/6 mice were exposed to 1 mg/kg HBCD every 3 days for 28 days. Major lipid classes were found to change across brain regions, including the membrane glycerolipids phosphatidylcholine and phosphatidylethanolamine, and sphingolipids such as hexosylceramide. In addition, saturated, monounsaturated, and polyunsaturated fatty acids were enriched within brain lipid species. To understand the source of the brain lipidomic alterations, the blood and liver lipidomes and the cecal microbiome were evaluated. The liver and blood demonstrated changes amongst multiple lipid classes, including triacylglycerol suppression, as well as altered esterified fatty acid content. Significant alterations were also detected in the cecal microbiome, with decreases in the Firmicutes to Bacteriodetes ratio, changes in beta diversity, and pathway alterations associated with metabolic pathways and amino acid biosynthesis. These data demonstrate that HBCD can induce lipidomic alterations across brain regions and organs and supports a potential role of the microbiome in these alterations.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae094\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae094","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The Brominated Flame Retardant Hexabromocyclododecane Causes Systemic Changes in Polyunsaturated Fatty Acid Incorporation in Mouse Lipids.
Brominated flame retardants are used in many household products to reduce flammability, but often leach into the surrounding environment over time. Hexabromocyclododecane (HBCD) is one brominated flame retardant detected in human blood across the world. HBCD exposure can result in neurological problems and altered lipid metabolism, but to date the two remain unlinked. As lipids constitute ∼50% of brain dry weight, lipid metabolism plays a critical role in neuronal function and homeostasis. To determine the effect of HBCD exposure on brain lipid metabolism, young adult male C57BL/6 mice were exposed to 1 mg/kg HBCD every 3 days for 28 days. Major lipid classes were found to change across brain regions, including the membrane glycerolipids phosphatidylcholine and phosphatidylethanolamine, and sphingolipids such as hexosylceramide. In addition, saturated, monounsaturated, and polyunsaturated fatty acids were enriched within brain lipid species. To understand the source of the brain lipidomic alterations, the blood and liver lipidomes and the cecal microbiome were evaluated. The liver and blood demonstrated changes amongst multiple lipid classes, including triacylglycerol suppression, as well as altered esterified fatty acid content. Significant alterations were also detected in the cecal microbiome, with decreases in the Firmicutes to Bacteriodetes ratio, changes in beta diversity, and pathway alterations associated with metabolic pathways and amino acid biosynthesis. These data demonstrate that HBCD can induce lipidomic alterations across brain regions and organs and supports a potential role of the microbiome in these alterations.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.