Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao
{"title":"NAD+ 代谢酶抑制剂作为恶性脑膜瘤的放射增敏剂及其对 P53 表达的调节。","authors":"Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao","doi":"10.1158/1535-7163.MCT-23-0632","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"1586-1596"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression.\",\"authors\":\"Yifan Lv, Yuxuan Deng, Jie Feng, Jinqiu Liu, Mingxu Yang, Zhuonan Pu, Shaodong Zhang, Zhen Wu, Nan Ji, Deric M Park, Shuyu Hao\",\"doi\":\"10.1158/1535-7163.MCT-23-0632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"1586-1596\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-23-0632\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0632","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
NAD+ Metabolic Enzyme Inhibitor as Radiosensitizer for Malignant Meningioma and its Modulation of P53 Expression.
Surgical resection followed by radiotherapy (RT) is recommended for malignant meningioma, but poor outcome is unavoidable. To improve the efficacy of RT in malignant meningioma, a targeted radiosensitizer can be added. Nicotinamide phosphoribosyltransferase (NAMPT), highly expressed in high-grade meningiomas, may play a role in determining the radioresponse. Herein, we evaluated the impact of NAMPT inhibition on radiosensitivity in malignant meningioma in vivo and in vitro. IOMM-Lee and TTMM705 cells were treated with NAMPT inhibition (FK866 or shRNA NAMPT) before irradiation. The subsequent clonogenic assay demonstrated significantly increased radiosensitivity. Combination treatment with FK866 and irradiation significantly increased the number of G2/M-phase cells, percentage of apoptotic cells, and γ-H2A.X level compared with FK866 or RT alone. We examined the effect of NAMPT inhibition on NMI and p53 expression in IOMM-Lee and TTMM705 cells. NAMPT inhibition by FK866 and shRNA treatment increased NMI, p53, CDKN1A and BAX expression. Additionally, we assessed the efficacy of FK866/RT combination treatment in vivo. The combination treatment exhibited increased antitumor efficacy compared with either treatment alone. The Ki67 level was significantly lower, and the p53 and γ-H2A.X levels were significantly higher in the combination treatment group than in the other three groups. In conclusion, these results indicate that FK866 improves radiosensitivity in malignant meningioma, an effect that may be attributed to the increase in p53 expression.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.