Loredana N Ionică, Darius G Buriman, Adina V Lința, Raluca Șoșdean, Ana Lascu, Caius G Streian, Horea B Feier, Lucian Petrescu, Ioana M Mozoș, Adrian Sturza, Danina M Muntean
{"title":"Empagliflozin 和 dapagliflozin 降低了超重非糖尿病心脏病患者心房单胺氧化酶的表达,减轻了氧化应激。","authors":"Loredana N Ionică, Darius G Buriman, Adina V Lința, Raluca Șoșdean, Ana Lascu, Caius G Streian, Horea B Feier, Lucian Petrescu, Ioana M Mozoș, Adrian Sturza, Danina M Muntean","doi":"10.1007/s11010-024-05076-z","DOIUrl":null,"url":null,"abstract":"<p><p>The sodium-glucose-cotransporter 2 inhibitors (SGLT2i) are the blockbuster antidiabetic drugs that exert cardiovascular protection via pleiotropic effects. We have previously demonstrated that empagliflozin decreased monoamine oxidase (MAO) expression and oxidative stress in human mammary arteries. The present study performed in overweight, non-diabetic cardiac patients was aimed to assess whether the two widely prescribed SGLT2i decrease atrial MAO expression and alleviate oxidative stress elicited by exposure to angiotensin 2 (ANG2) and high glucose (GLUC). Right atrial appendages isolated during cardiac surgery were incubated ex vivo with either empagliflozin or dapagliflozin (1, 10 µm, 12 h) in the presence or absence of ANG2 (100 nm) and GLUC (400 mg/dL) and used for the evaluation of MAO-A and MAO-B expression and ROS production. Stimulation with ANG2 and GLUC increased atrial expression of both MAOs and oxidative stress; the effects were significantly decreased by the SGLT2i. Atrial oxidative stress positively correlated with the echocardiographic size of heart chambers and negatively with the left ventricular ejection fraction. In overweight patients, MAO contributes to cardiac oxidative stress in basal conditions and those that mimicked the renin-angiotensin system activation and hyperglycemia and can be targeted with empagliflozin and dapagliflozin, as novel off-target class effect of the SGLT2i.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"1645-1655"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842473/pdf/","citationCount":"0","resultStr":"{\"title\":\"Empagliflozin and dapagliflozin decreased atrial monoamine oxidase expression and alleviated oxidative stress in overweight non-diabetic cardiac patients.\",\"authors\":\"Loredana N Ionică, Darius G Buriman, Adina V Lința, Raluca Șoșdean, Ana Lascu, Caius G Streian, Horea B Feier, Lucian Petrescu, Ioana M Mozoș, Adrian Sturza, Danina M Muntean\",\"doi\":\"10.1007/s11010-024-05076-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sodium-glucose-cotransporter 2 inhibitors (SGLT2i) are the blockbuster antidiabetic drugs that exert cardiovascular protection via pleiotropic effects. We have previously demonstrated that empagliflozin decreased monoamine oxidase (MAO) expression and oxidative stress in human mammary arteries. The present study performed in overweight, non-diabetic cardiac patients was aimed to assess whether the two widely prescribed SGLT2i decrease atrial MAO expression and alleviate oxidative stress elicited by exposure to angiotensin 2 (ANG2) and high glucose (GLUC). Right atrial appendages isolated during cardiac surgery were incubated ex vivo with either empagliflozin or dapagliflozin (1, 10 µm, 12 h) in the presence or absence of ANG2 (100 nm) and GLUC (400 mg/dL) and used for the evaluation of MAO-A and MAO-B expression and ROS production. Stimulation with ANG2 and GLUC increased atrial expression of both MAOs and oxidative stress; the effects were significantly decreased by the SGLT2i. Atrial oxidative stress positively correlated with the echocardiographic size of heart chambers and negatively with the left ventricular ejection fraction. In overweight patients, MAO contributes to cardiac oxidative stress in basal conditions and those that mimicked the renin-angiotensin system activation and hyperglycemia and can be targeted with empagliflozin and dapagliflozin, as novel off-target class effect of the SGLT2i.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"1645-1655\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05076-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05076-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
钠-葡萄糖转运体 2 抑制剂(SGLT2i)是抗糖尿病药物中的佼佼者,可通过多生物效应保护心血管。我们以前曾证实,empagliflozin 能降低单胺氧化酶(MAO)的表达和人乳腺动脉的氧化应激。本研究在超重、非糖尿病心脏病患者中进行,旨在评估两种广泛使用的 SGLT2i 是否会降低心房 MAO 的表达并减轻血管紧张素 2(ANG2)和高葡萄糖(GLUC)引起的氧化应激。在ANG2(100 nm)和GLUC(400 mg/dL)存在或不存在的情况下,用empagliflozin或dapagliflozin(1, 10 µm,12 h)对心脏手术中分离的右心房附属物进行体外培养,并用于评估MAO-A和MAO-B的表达及ROS的产生。ANG2 和 GLUC 的刺激增加了心房 MAO 的表达和氧化应激;SGLT2i 能显著降低这些影响。心房氧化应激与超声心动图心腔大小呈正相关,与左心室射血分数呈负相关。在超重患者中,MAO在基础条件和模拟肾素-血管紧张素系统激活和高血糖的条件下对心脏氧化应激有促进作用,可以作为SGLT2i的新型脱靶类效应使用empagliflozin和dapagliflozin。
Empagliflozin and dapagliflozin decreased atrial monoamine oxidase expression and alleviated oxidative stress in overweight non-diabetic cardiac patients.
The sodium-glucose-cotransporter 2 inhibitors (SGLT2i) are the blockbuster antidiabetic drugs that exert cardiovascular protection via pleiotropic effects. We have previously demonstrated that empagliflozin decreased monoamine oxidase (MAO) expression and oxidative stress in human mammary arteries. The present study performed in overweight, non-diabetic cardiac patients was aimed to assess whether the two widely prescribed SGLT2i decrease atrial MAO expression and alleviate oxidative stress elicited by exposure to angiotensin 2 (ANG2) and high glucose (GLUC). Right atrial appendages isolated during cardiac surgery were incubated ex vivo with either empagliflozin or dapagliflozin (1, 10 µm, 12 h) in the presence or absence of ANG2 (100 nm) and GLUC (400 mg/dL) and used for the evaluation of MAO-A and MAO-B expression and ROS production. Stimulation with ANG2 and GLUC increased atrial expression of both MAOs and oxidative stress; the effects were significantly decreased by the SGLT2i. Atrial oxidative stress positively correlated with the echocardiographic size of heart chambers and negatively with the left ventricular ejection fraction. In overweight patients, MAO contributes to cardiac oxidative stress in basal conditions and those that mimicked the renin-angiotensin system activation and hyperglycemia and can be targeted with empagliflozin and dapagliflozin, as novel off-target class effect of the SGLT2i.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.