多发性硬化症药物研发中与动物模型结合使用的补充策略:根据再髓鞘化策略的需要对候选药物进行临床前验证。

IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Imane Charmarke-Askar, Caroline Spenlé, Dominique Bagnard
{"title":"多发性硬化症药物研发中与动物模型结合使用的补充策略:根据再髓鞘化策略的需要对候选药物进行临床前验证。","authors":"Imane Charmarke-Askar, Caroline Spenlé, Dominique Bagnard","doi":"10.1080/17460441.2024.2382180","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs.</p><p><strong>Areas covered: </strong>In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation.</p><p><strong>Expert opinion: </strong>None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies.\",\"authors\":\"Imane Charmarke-Askar, Caroline Spenlé, Dominique Bagnard\",\"doi\":\"10.1080/17460441.2024.2382180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs.</p><p><strong>Areas covered: </strong>In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation.</p><p><strong>Expert opinion: </strong>None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2024.2382180\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2382180","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

导言:寻求新型多发性硬化症疗法的重点是促进髓鞘再形成和神经保护,这需要创新的药物设计范例和稳健的临床前验证方法,以确保高效的临床转化。新药作用机制的复杂性加强了对扎实的生物学验证的需求,试图解决所有可能的隐患和偏差,以获得高效安全的药物:在这篇综述中,作者介绍了不同的体外和体内模型,这些模型应被用于创建一种综合方法来进行新药的临床前验证,包括对作用机制的评估。其中包括二维、三维体外模型和动物模型,以确定在药物筛选和疗效验证的全过程中如何合理使用:专家意见:目前可用的检测方法中,没有一种能同时对抗炎药物、免疫调节剂或再髓鞘药物进行充分可靠的评估。因此,学术界、业界和监管机构的共同努力对于建立标准化方案、验证新方法以及将临床前研究结果转化为有临床意义的结果至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies.

Introduction: The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs.

Areas covered: In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation.

Expert opinion: None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信