{"title":"寻常型天疱疮患者的角朊细胞暴露于抗desmoglein-3的单克隆致病抗体AK23后,其活性氧主转录因子Nrf2发生了改变。","authors":"Faris Mohsin Ali Alabeedi","doi":"10.1080/08916934.2024.2377138","DOIUrl":null,"url":null,"abstract":"<p><p>Keratinocytes in mucosal and skin tissues maintain tissue integrity <i>via</i> desmosomes and desmoglein-3 (Dsg3). Pemphigus Vulgaris (PV) is a life-threatening autoimmune blistering disease characterized by autoantibodies against Dsg3, disrupting desmosomes. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates oxidative stress responses crucial for skin tissue protection. Although the pathogenesis of PV is known, the detailed molecular events remain unclear. This study investigates changes in Nrf2 expression in keratinocytes following pathogenic anti-Dsg3 antibody AK23 exposure, using dose- and time-dependent studies employing immunofluorescence analysis. N/TERT keratinocytes were cultured in keratinocytes serum-free medium and treated with AK23 at varying doses (5 µg/mL,40µg/mL,75µg/mL) and durations (2, 6, 24 h). Immunofluorescence staining was performed to assess the expression of Nrf2 and Dsg3. All fluorescent images were analyzed using ImageJ software. A dose-dependent increase in Dsg3 was noted following AK23 treatment, while Nrf2 expression and subcellular localization varied. Time-course analyses showed decreased Nrf2 at 24 h and increased Dsg3 levels. Early time-point (2 and 6 h) variations were evident in Nrf2 levels. This study highlights the impact of AK23 on Nrf2 expression, potentially disrupting Nrf2-mediated cytoprotection and implicating oxidative stress (ROS generation) in PV pathogenesis. Further investigation is necessary to validate the findings.</p>","PeriodicalId":8688,"journal":{"name":"Autoimmunity","volume":"57 1","pages":"2377138"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alteration of reactive oxygen species master transcription factor Nrf2 in keratinocytes exposed to monoclonal pathogenic antibody AK23 against desmoglein-3 in pemphigus vulgaris.\",\"authors\":\"Faris Mohsin Ali Alabeedi\",\"doi\":\"10.1080/08916934.2024.2377138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Keratinocytes in mucosal and skin tissues maintain tissue integrity <i>via</i> desmosomes and desmoglein-3 (Dsg3). Pemphigus Vulgaris (PV) is a life-threatening autoimmune blistering disease characterized by autoantibodies against Dsg3, disrupting desmosomes. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates oxidative stress responses crucial for skin tissue protection. Although the pathogenesis of PV is known, the detailed molecular events remain unclear. This study investigates changes in Nrf2 expression in keratinocytes following pathogenic anti-Dsg3 antibody AK23 exposure, using dose- and time-dependent studies employing immunofluorescence analysis. N/TERT keratinocytes were cultured in keratinocytes serum-free medium and treated with AK23 at varying doses (5 µg/mL,40µg/mL,75µg/mL) and durations (2, 6, 24 h). Immunofluorescence staining was performed to assess the expression of Nrf2 and Dsg3. All fluorescent images were analyzed using ImageJ software. A dose-dependent increase in Dsg3 was noted following AK23 treatment, while Nrf2 expression and subcellular localization varied. Time-course analyses showed decreased Nrf2 at 24 h and increased Dsg3 levels. Early time-point (2 and 6 h) variations were evident in Nrf2 levels. This study highlights the impact of AK23 on Nrf2 expression, potentially disrupting Nrf2-mediated cytoprotection and implicating oxidative stress (ROS generation) in PV pathogenesis. Further investigation is necessary to validate the findings.</p>\",\"PeriodicalId\":8688,\"journal\":{\"name\":\"Autoimmunity\",\"volume\":\"57 1\",\"pages\":\"2377138\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoimmunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08916934.2024.2377138\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2024.2377138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Alteration of reactive oxygen species master transcription factor Nrf2 in keratinocytes exposed to monoclonal pathogenic antibody AK23 against desmoglein-3 in pemphigus vulgaris.
Keratinocytes in mucosal and skin tissues maintain tissue integrity via desmosomes and desmoglein-3 (Dsg3). Pemphigus Vulgaris (PV) is a life-threatening autoimmune blistering disease characterized by autoantibodies against Dsg3, disrupting desmosomes. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates oxidative stress responses crucial for skin tissue protection. Although the pathogenesis of PV is known, the detailed molecular events remain unclear. This study investigates changes in Nrf2 expression in keratinocytes following pathogenic anti-Dsg3 antibody AK23 exposure, using dose- and time-dependent studies employing immunofluorescence analysis. N/TERT keratinocytes were cultured in keratinocytes serum-free medium and treated with AK23 at varying doses (5 µg/mL,40µg/mL,75µg/mL) and durations (2, 6, 24 h). Immunofluorescence staining was performed to assess the expression of Nrf2 and Dsg3. All fluorescent images were analyzed using ImageJ software. A dose-dependent increase in Dsg3 was noted following AK23 treatment, while Nrf2 expression and subcellular localization varied. Time-course analyses showed decreased Nrf2 at 24 h and increased Dsg3 levels. Early time-point (2 and 6 h) variations were evident in Nrf2 levels. This study highlights the impact of AK23 on Nrf2 expression, potentially disrupting Nrf2-mediated cytoprotection and implicating oxidative stress (ROS generation) in PV pathogenesis. Further investigation is necessary to validate the findings.
期刊介绍:
Autoimmunity is an international, peer reviewed journal that publishes articles on cell and molecular immunology, immunogenetics, molecular biology and autoimmunity. Current understanding of immunity and autoimmunity is being furthered by the progress in new molecular sciences that has recently been little short of spectacular. In addition to the basic elements and mechanisms of the immune system, Autoimmunity is interested in the cellular and molecular processes associated with systemic lupus erythematosus, rheumatoid arthritis, Sjogren syndrome, type I diabetes, multiple sclerosis and other systemic and organ-specific autoimmune disorders. The journal reflects the immunology areas where scientific progress is most rapid. It is a valuable tool to basic and translational researchers in cell biology, genetics and molecular biology of immunity and autoimmunity.