Stuti Khadka, Sebastian A Dziadowicz, Xiaojiang Xu, Lei Wang, Gangqing Hu, Javier A Carrero, Richard J DiPaolo, Jonathan T Busada
{"title":"正常的巨噬细胞活化和胃幽门螺旋杆菌免疫需要内源性糖皮质激素。","authors":"Stuti Khadka, Sebastian A Dziadowicz, Xiaojiang Xu, Lei Wang, Gangqing Hu, Javier A Carrero, Richard J DiPaolo, Jonathan T Busada","doi":"10.1152/ajpgi.00114.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Glucocorticoids are steroid hormones well known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the <i>LysM-Cre</i> driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to <i>Helicobacter pylori</i>, the best-known risk factor of gastric cancer. Our results indicate that, compared with wild type (WT), glucocorticoid receptor knockout (GRKO) macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with <i>H. pylori</i> revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric <i>H. pylori</i> immunity.<b>NEW & NOTEWORTHY</b> Signaling by endogenous glucocorticoids primes macrophages toward more robust responses to pathogens. Disruption of glucocorticoid signaling caused dysregulation of the chromatin landscape, blunted proinflammatory gene activation upon bacterial challenge, and impaired the gastric inflammatory response to <i>Helicobacter pylori</i> infection.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G531-G544"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482275/pdf/","citationCount":"0","resultStr":"{\"title\":\"Endogenous glucocorticoids are required for normal macrophage activation and gastric <i>Helicobacter pylori</i> immunity.\",\"authors\":\"Stuti Khadka, Sebastian A Dziadowicz, Xiaojiang Xu, Lei Wang, Gangqing Hu, Javier A Carrero, Richard J DiPaolo, Jonathan T Busada\",\"doi\":\"10.1152/ajpgi.00114.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucocorticoids are steroid hormones well known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the <i>LysM-Cre</i> driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to <i>Helicobacter pylori</i>, the best-known risk factor of gastric cancer. Our results indicate that, compared with wild type (WT), glucocorticoid receptor knockout (GRKO) macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with <i>H. pylori</i> revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric <i>H. pylori</i> immunity.<b>NEW & NOTEWORTHY</b> Signaling by endogenous glucocorticoids primes macrophages toward more robust responses to pathogens. Disruption of glucocorticoid signaling caused dysregulation of the chromatin landscape, blunted proinflammatory gene activation upon bacterial challenge, and impaired the gastric inflammatory response to <i>Helicobacter pylori</i> infection.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G531-G544\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00114.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00114.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Endogenous glucocorticoids are required for normal macrophage activation and gastric Helicobacter pylori immunity.
Glucocorticoids are steroid hormones well known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori, the best-known risk factor of gastric cancer. Our results indicate that, compared with wild type (WT), glucocorticoid receptor knockout (GRKO) macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with H. pylori revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric H. pylori immunity.NEW & NOTEWORTHY Signaling by endogenous glucocorticoids primes macrophages toward more robust responses to pathogens. Disruption of glucocorticoid signaling caused dysregulation of the chromatin landscape, blunted proinflammatory gene activation upon bacterial challenge, and impaired the gastric inflammatory response to Helicobacter pylori infection.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.