论具有半平行里奇张量的共形平坦曲面及其在仿射超球研究中的应用

IF 1.1 3区 数学 Q1 MATHEMATICS
Weilin Duan, Zejun Hu, Cheng Xing
{"title":"论具有半平行里奇张量的共形平坦曲面及其在仿射超球研究中的应用","authors":"Weilin Duan, Zejun Hu, Cheng Xing","doi":"10.1007/s00025-024-02232-1","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the study of <i>n</i>-dimensional conformally flat Riemannian manifolds for <span>\\(n\\ge 3\\)</span> and its applications in affine differential geometry. First, improving the work of Sekigawa–Takagi (Tohoku Math J 23:1–11, 1971), we have a complete classification for conformally flat Riemannian manifolds with semi-parallel Ricci tensor. Then, as an application, we establish a complete classification of locally strongly convex affine hyperspheres in the <span>\\((n+1)\\)</span>-dimensional affine space <span>\\({\\mathbb {R}}^{n+1}\\)</span> with conformally flat affine metric and semi-parallel Ricci tensor, which generalizes the previous works of Cheng–Hu–Moruz–Vrancken (Sci China Math 63:2055–2078, 2020) and Hu–Xing (J Math Anal Appl 528:127596, 2023) on affine hyperspheres with parallel Ricci tensor.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Conformally Flat Manifolds with Semi-parallel Ricci Tensor and Applications to the Study of Affine Hyperspheres\",\"authors\":\"Weilin Duan, Zejun Hu, Cheng Xing\",\"doi\":\"10.1007/s00025-024-02232-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the study of <i>n</i>-dimensional conformally flat Riemannian manifolds for <span>\\\\(n\\\\ge 3\\\\)</span> and its applications in affine differential geometry. First, improving the work of Sekigawa–Takagi (Tohoku Math J 23:1–11, 1971), we have a complete classification for conformally flat Riemannian manifolds with semi-parallel Ricci tensor. Then, as an application, we establish a complete classification of locally strongly convex affine hyperspheres in the <span>\\\\((n+1)\\\\)</span>-dimensional affine space <span>\\\\({\\\\mathbb {R}}^{n+1}\\\\)</span> with conformally flat affine metric and semi-parallel Ricci tensor, which generalizes the previous works of Cheng–Hu–Moruz–Vrancken (Sci China Math 63:2055–2078, 2020) and Hu–Xing (J Math Anal Appl 528:127596, 2023) on affine hyperspheres with parallel Ricci tensor.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02232-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02232-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究 \(n\ge 3\) 的 n 维共形平坦黎曼流形及其在仿射微分几何中的应用。首先,我们改进了关川高木(Sekigawa-Takagi)的工作(Tohoku Math J 23:1-11,1971),得到了具有半平行里奇张量的共形平坦黎曼流形的完整分类。然后,作为一个应用,我们在具有保角平仿射度量和半平行里奇张量的 \((n+1)\) 维仿射空间 \({\mathbb {R}}^{n+1}\) 中建立了局部强凸仿射超球的完整分类,它概括了程虎-莫鲁兹-弗兰肯(Sci China Math 63:2055-2078, 2020)和胡星(J Math Anal Appl 528:127596, 2023)关于具有平行里奇张量的仿射超球的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Conformally Flat Manifolds with Semi-parallel Ricci Tensor and Applications to the Study of Affine Hyperspheres

This paper is concerned with the study of n-dimensional conformally flat Riemannian manifolds for \(n\ge 3\) and its applications in affine differential geometry. First, improving the work of Sekigawa–Takagi (Tohoku Math J 23:1–11, 1971), we have a complete classification for conformally flat Riemannian manifolds with semi-parallel Ricci tensor. Then, as an application, we establish a complete classification of locally strongly convex affine hyperspheres in the \((n+1)\)-dimensional affine space \({\mathbb {R}}^{n+1}\) with conformally flat affine metric and semi-parallel Ricci tensor, which generalizes the previous works of Cheng–Hu–Moruz–Vrancken (Sci China Math 63:2055–2078, 2020) and Hu–Xing (J Math Anal Appl 528:127596, 2023) on affine hyperspheres with parallel Ricci tensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信