Ghada E. Yassin, Mai A. Amer, Islam M. Mannaa, Maha Khalifa Ahmed Khalifa
{"title":"氟康唑-含糖隐形眼镜:有望延长眼部给药时间并增强抗真菌活性的治疗方法","authors":"Ghada E. Yassin, Mai A. Amer, Islam M. Mannaa, Maha Khalifa Ahmed Khalifa","doi":"10.1007/s12247-024-09850-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Traditional routes of administration of fluconazole such as eye drops have a low therapeutic efficacy due to insufficient bioavailability.</p><h3>Purpose</h3><p>Herein, a fluconazole noisome-laden contact lens was prepared to control and prolong the drug release and improve its bioavailability.</p><h3>Methods</h3><p>Two methods have been used to prepare fluconazole niosomes: solvent injection method and thin film hydration method utilizing span 60 and cholesterol mixture. Subsequently, formulations were optimized using three factors and a two-level factorial design and were subjected to in-vitro characterization for the size of niosomes, zeta potential, entrapment efficiency percent, and cytotoxicity study. The optimized fluconazole niosomes were further entrapped in contact lenses by the soaking method and were evaluated according to in-vitro release profile, and antimicrobial activity.</p><h3>Results</h3><p>The results revealed that the investigated fluconazole niosomes are of nano-size ranging from 228.2 to 769.2 nm with zeta-potential values between − 18.1 and − 60.2 mV. The entrapment efficiency percentage ranged from 51.3 to 75%. Fluconazole was released from fluconazole noisome-laden contact lens and showed a prolonged release up to 48–72 h with a cumulative release of 79.62%. Statistical analysis showed that fluconazole-noisome-laden contact lenses have a significant impressive fungal adhesion reduction as compared to fluconazole-laden contact lenses.</p><h3>Conclusion</h3><p>Fluconazole noisome-laden contact lenses are a promising therapeutic way for effective and prolonged treatment of ocular fungal infection.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"19 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12247-024-09850-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluconazole-Niosome-Laden Contact Lens: A Promising Therapeutic Approach for Prolonged Ocular Delivery and Enhanced Antifungal Activity\",\"authors\":\"Ghada E. Yassin, Mai A. Amer, Islam M. Mannaa, Maha Khalifa Ahmed Khalifa\",\"doi\":\"10.1007/s12247-024-09850-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Traditional routes of administration of fluconazole such as eye drops have a low therapeutic efficacy due to insufficient bioavailability.</p><h3>Purpose</h3><p>Herein, a fluconazole noisome-laden contact lens was prepared to control and prolong the drug release and improve its bioavailability.</p><h3>Methods</h3><p>Two methods have been used to prepare fluconazole niosomes: solvent injection method and thin film hydration method utilizing span 60 and cholesterol mixture. Subsequently, formulations were optimized using three factors and a two-level factorial design and were subjected to in-vitro characterization for the size of niosomes, zeta potential, entrapment efficiency percent, and cytotoxicity study. The optimized fluconazole niosomes were further entrapped in contact lenses by the soaking method and were evaluated according to in-vitro release profile, and antimicrobial activity.</p><h3>Results</h3><p>The results revealed that the investigated fluconazole niosomes are of nano-size ranging from 228.2 to 769.2 nm with zeta-potential values between − 18.1 and − 60.2 mV. The entrapment efficiency percentage ranged from 51.3 to 75%. Fluconazole was released from fluconazole noisome-laden contact lens and showed a prolonged release up to 48–72 h with a cumulative release of 79.62%. Statistical analysis showed that fluconazole-noisome-laden contact lenses have a significant impressive fungal adhesion reduction as compared to fluconazole-laden contact lenses.</p><h3>Conclusion</h3><p>Fluconazole noisome-laden contact lenses are a promising therapeutic way for effective and prolonged treatment of ocular fungal infection.</p></div>\",\"PeriodicalId\":656,\"journal\":{\"name\":\"Journal of Pharmaceutical Innovation\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12247-024-09850-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical Innovation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12247-024-09850-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09850-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Fluconazole-Niosome-Laden Contact Lens: A Promising Therapeutic Approach for Prolonged Ocular Delivery and Enhanced Antifungal Activity
Background
Traditional routes of administration of fluconazole such as eye drops have a low therapeutic efficacy due to insufficient bioavailability.
Purpose
Herein, a fluconazole noisome-laden contact lens was prepared to control and prolong the drug release and improve its bioavailability.
Methods
Two methods have been used to prepare fluconazole niosomes: solvent injection method and thin film hydration method utilizing span 60 and cholesterol mixture. Subsequently, formulations were optimized using three factors and a two-level factorial design and were subjected to in-vitro characterization for the size of niosomes, zeta potential, entrapment efficiency percent, and cytotoxicity study. The optimized fluconazole niosomes were further entrapped in contact lenses by the soaking method and were evaluated according to in-vitro release profile, and antimicrobial activity.
Results
The results revealed that the investigated fluconazole niosomes are of nano-size ranging from 228.2 to 769.2 nm with zeta-potential values between − 18.1 and − 60.2 mV. The entrapment efficiency percentage ranged from 51.3 to 75%. Fluconazole was released from fluconazole noisome-laden contact lens and showed a prolonged release up to 48–72 h with a cumulative release of 79.62%. Statistical analysis showed that fluconazole-noisome-laden contact lenses have a significant impressive fungal adhesion reduction as compared to fluconazole-laden contact lenses.
Conclusion
Fluconazole noisome-laden contact lenses are a promising therapeutic way for effective and prolonged treatment of ocular fungal infection.
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.