无穷二元微分方程系统的最优追求微分博弈问题

IF 0.8 Q2 MATHEMATICS
G. I. Ibragimov, X. Sh. Qo’shaqov, A. A. Muxammadjonov
{"title":"无穷二元微分方程系统的最优追求微分博弈问题","authors":"G. I. Ibragimov, X. Sh. Qo’shaqov, A. A. Muxammadjonov","doi":"10.1134/s1995080224600821","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We study a differential game problem for an infinite system of binary differential equations. The control functions of pursuer and evader are subjected to integral constraints. The pursuer tries to bring the state of the system to the origin of the Hilbert space <span>\\(l_{2}\\)</span> and the aim of the evader is opposite. An equation for the optimal pursuit time is obtained and optimal controls of players are constructed. Also, an auxiliary optimal control problem is solved to prove the main result of the paper.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Pursuit Differential Game Problem for an Infinite System of Binary Differential Equations\",\"authors\":\"G. I. Ibragimov, X. Sh. Qo’shaqov, A. A. Muxammadjonov\",\"doi\":\"10.1134/s1995080224600821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We study a differential game problem for an infinite system of binary differential equations. The control functions of pursuer and evader are subjected to integral constraints. The pursuer tries to bring the state of the system to the origin of the Hilbert space <span>\\\\(l_{2}\\\\)</span> and the aim of the evader is opposite. An equation for the optimal pursuit time is obtained and optimal controls of players are constructed. Also, an auxiliary optimal control problem is solved to prove the main result of the paper.</p>\",\"PeriodicalId\":46135,\"journal\":{\"name\":\"Lobachevskii Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lobachevskii Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995080224600821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224600821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一个无穷二元微分方程系统的微分博弈问题。追逐者和逃避者的控制函数都受到积分约束。追逐者试图使系统的状态到达希尔伯特空间 \(l_{2}\)的原点,而逃避者的目标则相反。我们得到了最优追逐时间方程,并构建了追逐者的最优控制。此外,还求解了一个辅助最优控制问题,以证明本文的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Pursuit Differential Game Problem for an Infinite System of Binary Differential Equations

Abstract

We study a differential game problem for an infinite system of binary differential equations. The control functions of pursuer and evader are subjected to integral constraints. The pursuer tries to bring the state of the system to the origin of the Hilbert space \(l_{2}\) and the aim of the evader is opposite. An equation for the optimal pursuit time is obtained and optimal controls of players are constructed. Also, an auxiliary optimal control problem is solved to prove the main result of the paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信