Ω$自变量与 Wilke 代数之四元数之间的双重缀合

Anton Chernev, Helle Hvid Hansen, Clemens Kupke
{"title":"Ω$自变量与 Wilke 代数之四元数之间的双重缀合","authors":"Anton Chernev, Helle Hvid Hansen, Clemens Kupke","doi":"arxiv-2407.14115","DOIUrl":null,"url":null,"abstract":"$\\Omega$-automata and Wilke algebras are formalisms for characterising\n$\\omega$-regular languages via their ultimately periodic words.\n$\\Omega$-automata read finite representations of ultimately periodic words,\ncalled lassos, and they are a subclass of lasso automata. We introduce lasso\nsemigroups as a generalisation of Wilke algebras that mirrors how lasso\nautomata generalise $\\Omega$-automata, and we show that finite lasso semigroups\ncharacterise regular lasso languages. We then show a dual adjunction between\nlasso automata and quotients of the free lasso semigroup with a recognising\nset, and as our main result we show that this dual adjunction restricts to one\nbetween $\\Omega$-automata and quotients of the free Wilke algebra with a\nrecognising set.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Adjunction Between $Ω$-Automata and Wilke Algebra Quotients\",\"authors\":\"Anton Chernev, Helle Hvid Hansen, Clemens Kupke\",\"doi\":\"arxiv-2407.14115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\Omega$-automata and Wilke algebras are formalisms for characterising\\n$\\\\omega$-regular languages via their ultimately periodic words.\\n$\\\\Omega$-automata read finite representations of ultimately periodic words,\\ncalled lassos, and they are a subclass of lasso automata. We introduce lasso\\nsemigroups as a generalisation of Wilke algebras that mirrors how lasso\\nautomata generalise $\\\\Omega$-automata, and we show that finite lasso semigroups\\ncharacterise regular lasso languages. We then show a dual adjunction between\\nlasso automata and quotients of the free lasso semigroup with a recognising\\nset, and as our main result we show that this dual adjunction restricts to one\\nbetween $\\\\Omega$-automata and quotients of the free Wilke algebra with a\\nrecognising set.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$\Omega$-automata和Wilke代数是通过终周期词来描述$\omega$正则表达式语言的形式主义。我们将拉索半群作为威尔克代数的一种泛化来介绍,它反映了拉索自动机是如何泛化 $\Omega$-automata 的,我们还证明了有限拉索半群是规则拉索语言的特征。然后,我们展示了拉索自动机与具有识别集的自由拉索半群的商之间的对偶隶属关系,作为我们的主要结果,我们展示了这种对偶隶属关系限制了 $\Omega$-automata 与具有识别集的自由 Wilke 代数的商之间的对偶隶属关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Adjunction Between $Ω$-Automata and Wilke Algebra Quotients
$\Omega$-automata and Wilke algebras are formalisms for characterising $\omega$-regular languages via their ultimately periodic words. $\Omega$-automata read finite representations of ultimately periodic words, called lassos, and they are a subclass of lasso automata. We introduce lasso semigroups as a generalisation of Wilke algebras that mirrors how lasso automata generalise $\Omega$-automata, and we show that finite lasso semigroups characterise regular lasso languages. We then show a dual adjunction between lasso automata and quotients of the free lasso semigroup with a recognising set, and as our main result we show that this dual adjunction restricts to one between $\Omega$-automata and quotients of the free Wilke algebra with a recognising set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信