表面上矢量值 PDE 的扩散界面方法

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Michael Nestler, Axel Voigt
{"title":"表面上矢量值 PDE 的扩散界面方法","authors":"Michael Nestler, Axel Voigt","doi":"10.4310/cms.2024.v22.n6.a13","DOIUrl":null,"url":null,"abstract":"Approximating PDEs on surfaces by the diffuse interface approach allows us to use standard numerical tools to solve these problems. This makes it an attractive numerical approach. We extend this approach to vector-valued surface PDEs and explore their convergence properties. In contrast to the well-studied case of scalar-valued surface PDEs, the optimal order of convergence can only be achieved if certain higher-order relations between mesh size and interface width are fulfilled. This difference results from the increased coupling between the surface geometry and the PDE for vector-valued quantities defined on it.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diffuse interface approach for vector-valued PDEs on surfaces\",\"authors\":\"Michael Nestler, Axel Voigt\",\"doi\":\"10.4310/cms.2024.v22.n6.a13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximating PDEs on surfaces by the diffuse interface approach allows us to use standard numerical tools to solve these problems. This makes it an attractive numerical approach. We extend this approach to vector-valued surface PDEs and explore their convergence properties. In contrast to the well-studied case of scalar-valued surface PDEs, the optimal order of convergence can only be achieved if certain higher-order relations between mesh size and interface width are fulfilled. This difference results from the increased coupling between the surface geometry and the PDE for vector-valued quantities defined on it.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n6.a13\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n6.a13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

用扩散界面方法来逼近表面上的 PDEs,可以让我们使用标准的数值工具来解决这些问题。这使它成为一种有吸引力的数值方法。我们将这种方法扩展到矢量值曲面 PDE,并探索其收敛特性。与研究得很透彻的标量值曲面 PDEs 不同,只有在网格尺寸和界面宽度之间的某些高阶关系得到满足时,才能达到最佳收敛阶数。这种差异源于表面几何与定义在其上的矢量值量的 PDE 之间的耦合增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A diffuse interface approach for vector-valued PDEs on surfaces
Approximating PDEs on surfaces by the diffuse interface approach allows us to use standard numerical tools to solve these problems. This makes it an attractive numerical approach. We extend this approach to vector-valued surface PDEs and explore their convergence properties. In contrast to the well-studied case of scalar-valued surface PDEs, the optimal order of convergence can only be achieved if certain higher-order relations between mesh size and interface width are fulfilled. This difference results from the increased coupling between the surface geometry and the PDE for vector-valued quantities defined on it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信