Sven Jäger, Guillaume Sagnol, Daniel Schmidt genannt Waldschmidt, Philipp Warode
{"title":"非千里眼调度的竞争性杀死-重启和抢先策略","authors":"Sven Jäger, Guillaume Sagnol, Daniel Schmidt genannt Waldschmidt, Philipp Warode","doi":"10.1007/s10107-024-02118-8","DOIUrl":null,"url":null,"abstract":"<p>We study kill-and-restart and preemptive strategies for the fundamental scheduling problem of minimizing the sum of weighted completion times on a single machine in the non-clairvoyant setting. First, we show a lower bound of 3 for any deterministic non-clairvoyant kill-and-restart strategy. Then, we give for any <span>\\(b > 1\\)</span> a tight analysis for the natural <i>b</i>-scaling kill-and-restart strategy as well as for a randomized variant of it. In particular, we show a competitive ratio of <span>\\((1+3\\sqrt{3})\\approx 6.197\\)</span> for the deterministic and of <span>\\(\\approx 3.032\\)</span> for the randomized strategy, by making use of the largest eigenvalue of a Toeplitz matrix. In addition, we show that the preemptive Weighted Shortest Elapsed Time First (WSETF) rule is 2-competitive when jobs are released online, matching the lower bound for the unit weight case with trivial release dates for any non-clairvoyant algorithm. Using this result as well as the competitiveness of round-robin for multiple machines, we prove performance guarantees smaller than 10 for adaptions of the <i>b</i>-scaling strategy to online release dates and unweighted jobs on identical parallel machines.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"26 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Competitive kill-and-restart and preemptive strategies for non-clairvoyant scheduling\",\"authors\":\"Sven Jäger, Guillaume Sagnol, Daniel Schmidt genannt Waldschmidt, Philipp Warode\",\"doi\":\"10.1007/s10107-024-02118-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study kill-and-restart and preemptive strategies for the fundamental scheduling problem of minimizing the sum of weighted completion times on a single machine in the non-clairvoyant setting. First, we show a lower bound of 3 for any deterministic non-clairvoyant kill-and-restart strategy. Then, we give for any <span>\\\\(b > 1\\\\)</span> a tight analysis for the natural <i>b</i>-scaling kill-and-restart strategy as well as for a randomized variant of it. In particular, we show a competitive ratio of <span>\\\\((1+3\\\\sqrt{3})\\\\approx 6.197\\\\)</span> for the deterministic and of <span>\\\\(\\\\approx 3.032\\\\)</span> for the randomized strategy, by making use of the largest eigenvalue of a Toeplitz matrix. In addition, we show that the preemptive Weighted Shortest Elapsed Time First (WSETF) rule is 2-competitive when jobs are released online, matching the lower bound for the unit weight case with trivial release dates for any non-clairvoyant algorithm. Using this result as well as the competitiveness of round-robin for multiple machines, we prove performance guarantees smaller than 10 for adaptions of the <i>b</i>-scaling strategy to online release dates and unweighted jobs on identical parallel machines.</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02118-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02118-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Competitive kill-and-restart and preemptive strategies for non-clairvoyant scheduling
We study kill-and-restart and preemptive strategies for the fundamental scheduling problem of minimizing the sum of weighted completion times on a single machine in the non-clairvoyant setting. First, we show a lower bound of 3 for any deterministic non-clairvoyant kill-and-restart strategy. Then, we give for any \(b > 1\) a tight analysis for the natural b-scaling kill-and-restart strategy as well as for a randomized variant of it. In particular, we show a competitive ratio of \((1+3\sqrt{3})\approx 6.197\) for the deterministic and of \(\approx 3.032\) for the randomized strategy, by making use of the largest eigenvalue of a Toeplitz matrix. In addition, we show that the preemptive Weighted Shortest Elapsed Time First (WSETF) rule is 2-competitive when jobs are released online, matching the lower bound for the unit weight case with trivial release dates for any non-clairvoyant algorithm. Using this result as well as the competitiveness of round-robin for multiple machines, we prove performance guarantees smaller than 10 for adaptions of the b-scaling strategy to online release dates and unweighted jobs on identical parallel machines.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.