Roos 公理对准相干剪切成立

Leonid Positselski
{"title":"Roos 公理对准相干剪切成立","authors":"Leonid Positselski","doi":"arxiv-2407.13651","DOIUrl":null,"url":null,"abstract":"We show that the Grothendieck abelian category\n$X\\operatorname{\\mathsf{--Qcoh}}$ of quasi-coherent sheaves on a quasi-compact\nsemi-separated scheme $X$ satisfies the Roos axiom $\\mathrm{AB}4^*$-$n$: the\nderived functors of infinite product have finite homological dimension in\n$X\\operatorname{\\mathsf{--Qcoh}}$, not exceeding the number $n$ of open\nsubschemes in an affine open covering of $X$. The hereditary complete cotorsion\npair (very flat quasi-coherent sheaves, contraadjusted quasi-coherent sheaves)\nin the abelian category $X\\operatorname{\\mathsf{--Qcoh}}$ plays the key role in\nour arguments. Simply put, a suitable very flat quasi-coherent sheaf (or\nalternatively, a suitable direct sum of locally countably presented flat\nquasi-coherent sheaves) on $X$ is a generator of finite projective dimension\nfor the abelian category $X\\operatorname{\\mathsf{--Qcoh}}$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roos axiom holds for quasi-coherent sheaves\",\"authors\":\"Leonid Positselski\",\"doi\":\"arxiv-2407.13651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Grothendieck abelian category\\n$X\\\\operatorname{\\\\mathsf{--Qcoh}}$ of quasi-coherent sheaves on a quasi-compact\\nsemi-separated scheme $X$ satisfies the Roos axiom $\\\\mathrm{AB}4^*$-$n$: the\\nderived functors of infinite product have finite homological dimension in\\n$X\\\\operatorname{\\\\mathsf{--Qcoh}}$, not exceeding the number $n$ of open\\nsubschemes in an affine open covering of $X$. The hereditary complete cotorsion\\npair (very flat quasi-coherent sheaves, contraadjusted quasi-coherent sheaves)\\nin the abelian category $X\\\\operatorname{\\\\mathsf{--Qcoh}}$ plays the key role in\\nour arguments. Simply put, a suitable very flat quasi-coherent sheaf (or\\nalternatively, a suitable direct sum of locally countably presented flat\\nquasi-coherent sheaves) on $X$ is a generator of finite projective dimension\\nfor the abelian category $X\\\\operatorname{\\\\mathsf{--Qcoh}}$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在准紧密半分离方案 $X$ 上的准相干剪切的格罗内狄克阿贝尔范畴$X/operatorname{/mathsf{--Qcoh}}$ 满足罗氏公理 $/mathrm{AB}4^*$-$n$:无限积的派生函数在$X/operatorname/{mathsf{--Qcoh}}$中具有有限同调维度,不超过$X$的仿射开覆盖中的开子模式数$n$。在我们的论证中,无性范畴 $X/operatorname\{mathsf{--Qcoh}}$ 中的遗传完全同向对 (very flat quasi-coherent sheaves, contraadjusted quasi-coherent sheaves) 起着关键作用。简单地说,在 $X$ 上的一个合适的非常平坦的准相干剪(口头上说,是局部可数呈现的平坦准相干剪的一个合适的直接和),是无性范畴 $X\operatorname\{mathsf{--Qcoh}}$ 的一个有限投影维度的生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roos axiom holds for quasi-coherent sheaves
We show that the Grothendieck abelian category $X\operatorname{\mathsf{--Qcoh}}$ of quasi-coherent sheaves on a quasi-compact semi-separated scheme $X$ satisfies the Roos axiom $\mathrm{AB}4^*$-$n$: the derived functors of infinite product have finite homological dimension in $X\operatorname{\mathsf{--Qcoh}}$, not exceeding the number $n$ of open subschemes in an affine open covering of $X$. The hereditary complete cotorsion pair (very flat quasi-coherent sheaves, contraadjusted quasi-coherent sheaves) in the abelian category $X\operatorname{\mathsf{--Qcoh}}$ plays the key role in our arguments. Simply put, a suitable very flat quasi-coherent sheaf (or alternatively, a suitable direct sum of locally countably presented flat quasi-coherent sheaves) on $X$ is a generator of finite projective dimension for the abelian category $X\operatorname{\mathsf{--Qcoh}}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信