平方根 LASSO:拟合性、Lipschitz 稳定性和调整权衡

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Aaron Berk, Simone Brugiapaglia, Tim Hoheisel
{"title":"平方根 LASSO:拟合性、Lipschitz 稳定性和调整权衡","authors":"Aaron Berk, Simone Brugiapaglia, Tim Hoheisel","doi":"10.1137/23m1561968","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2609-2637, September 2024. <br/> Abstract. This paper studies well-posedness and parameter sensitivity of the square root LASSO (SR-LASSO), an optimization model for recovering sparse solutions to linear inverse problems in finite dimension. An advantage of the SR-LASSO (e.g., over the standard LASSO) is that the optimal tuning of the regularization parameter is robust with respect to measurement noise. This paper provides three point-based regularity conditions at a solution of the SR-LASSO: the weak, intermediate, and strong assumptions. It is shown that the weak assumption implies uniqueness of the solution in question. The intermediate assumption yields a directionally differentiable and locally Lipschitz solution map (with explicit Lipschitz bounds), whereas the strong assumption gives continuous differentiability of said map around the point in question. Our analysis leads to new theoretical insights on the comparison between SR-LASSO and LASSO from the viewpoint of tuning parameter sensitivity: noise-robust optimal parameter choice for SR-LASSO comes at the “price” of elevated tuning parameter sensitivity. Numerical results support and showcase the theoretical findings.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square Root LASSO: Well-Posedness, Lipschitz Stability, and the Tuning Trade-Off\",\"authors\":\"Aaron Berk, Simone Brugiapaglia, Tim Hoheisel\",\"doi\":\"10.1137/23m1561968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2609-2637, September 2024. <br/> Abstract. This paper studies well-posedness and parameter sensitivity of the square root LASSO (SR-LASSO), an optimization model for recovering sparse solutions to linear inverse problems in finite dimension. An advantage of the SR-LASSO (e.g., over the standard LASSO) is that the optimal tuning of the regularization parameter is robust with respect to measurement noise. This paper provides three point-based regularity conditions at a solution of the SR-LASSO: the weak, intermediate, and strong assumptions. It is shown that the weak assumption implies uniqueness of the solution in question. The intermediate assumption yields a directionally differentiable and locally Lipschitz solution map (with explicit Lipschitz bounds), whereas the strong assumption gives continuous differentiability of said map around the point in question. Our analysis leads to new theoretical insights on the comparison between SR-LASSO and LASSO from the viewpoint of tuning parameter sensitivity: noise-robust optimal parameter choice for SR-LASSO comes at the “price” of elevated tuning parameter sensitivity. Numerical results support and showcase the theoretical findings.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1561968\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1561968","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 2609-2637 页,2024 年 9 月。 摘要本文研究了平方根 LASSO(SR-LASSO)的问题解决性和参数敏感性,SR-LASSO 是一种用于恢复有限维线性逆问题稀疏解的优化模型。与标准 LASSO 相比,SR-LASSO 的优势在于正则化参数的优化调整对测量噪声具有鲁棒性。本文提供了 SR-LASSO 解的三个基于点的正则性条件:弱假设、中假设和强假设。结果表明,弱假设意味着相关解的唯一性。中间假设产生了方向可微分和局部 Lipschitz 解映射(具有明确的 Lipschitz 边界),而强假设则给出了所述映射在相关点周围的连续可微分性。我们的分析从调谐参数灵敏度的角度,对 SR-LASSO 和 LASSO 的比较提出了新的理论见解:SR-LASSO 的噪声最优参数选择是以提高调谐参数灵敏度为 "代价 "的。数值结果支持并展示了理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Square Root LASSO: Well-Posedness, Lipschitz Stability, and the Tuning Trade-Off
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2609-2637, September 2024.
Abstract. This paper studies well-posedness and parameter sensitivity of the square root LASSO (SR-LASSO), an optimization model for recovering sparse solutions to linear inverse problems in finite dimension. An advantage of the SR-LASSO (e.g., over the standard LASSO) is that the optimal tuning of the regularization parameter is robust with respect to measurement noise. This paper provides three point-based regularity conditions at a solution of the SR-LASSO: the weak, intermediate, and strong assumptions. It is shown that the weak assumption implies uniqueness of the solution in question. The intermediate assumption yields a directionally differentiable and locally Lipschitz solution map (with explicit Lipschitz bounds), whereas the strong assumption gives continuous differentiability of said map around the point in question. Our analysis leads to new theoretical insights on the comparison between SR-LASSO and LASSO from the viewpoint of tuning parameter sensitivity: noise-robust optimal parameter choice for SR-LASSO comes at the “price” of elevated tuning parameter sensitivity. Numerical results support and showcase the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信