广义万尼尔基的代数定位意味着任意维度的罗氏三性

Vincenzo Rossi, Gianluca Panati
{"title":"广义万尼尔基的代数定位意味着任意维度的罗氏三性","authors":"Vincenzo Rossi, Gianluca Panati","doi":"arxiv-2407.14235","DOIUrl":null,"url":null,"abstract":"With the aim of understanding the localization topology correspondence for\nnon periodic gapped quantum systems, we investigate the relation between the\nexistence of an algebraically well-localized generalized Wannier basis and the\ntopological triviality of the corresponding projection operator. Inspired by\nthe work of M. Ludewig and G.C. Thiang, we consider the triviality of a\nprojection in the sense of coarse geometry, i.e. as triviality in the\n$K_0$-theory of the Roe $C^*$-algebra of $\\mathrm{R}^d$. We obtain in Theorem\n2.8 a threshold, depending on the dimension, for the decay rate of the\ngeneralized Wannier functions which implies topological triviality in Roe\nsense. This threshold reduces, for $d = 2$, to the almost optimal threshold\nappearing in the Localization Dichotomy Conjecture.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic localization of generalized Wannier bases implies Roe triviality in any dimension\",\"authors\":\"Vincenzo Rossi, Gianluca Panati\",\"doi\":\"arxiv-2407.14235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the aim of understanding the localization topology correspondence for\\nnon periodic gapped quantum systems, we investigate the relation between the\\nexistence of an algebraically well-localized generalized Wannier basis and the\\ntopological triviality of the corresponding projection operator. Inspired by\\nthe work of M. Ludewig and G.C. Thiang, we consider the triviality of a\\nprojection in the sense of coarse geometry, i.e. as triviality in the\\n$K_0$-theory of the Roe $C^*$-algebra of $\\\\mathrm{R}^d$. We obtain in Theorem\\n2.8 a threshold, depending on the dimension, for the decay rate of the\\ngeneralized Wannier functions which implies topological triviality in Roe\\nsense. This threshold reduces, for $d = 2$, to the almost optimal threshold\\nappearing in the Localization Dichotomy Conjecture.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了理解非周期性间隙量子系统的局域拓扑对应关系,我们研究了代数上局域良好的广义万尼尔基的存在与相应投影算子的拓扑三性之间的关系。受 M. Ludewig 和 G.C. Thiang 的研究启发,我们考虑了投影在粗几何意义上的三性,即在 $\mathrm{R}^d$ 的 Roe $C^*$ 代数的 $K_0$ 理论中的三性。在定理 2.8 中,我们得到了广义万尼尔函数衰减率的一个阈值,它取决于维数,而这意味着罗氏拓扑三性。对于 $d = 2$,这个临界值降低到了局部化二分猜想中出现的几乎最优临界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic localization of generalized Wannier bases implies Roe triviality in any dimension
With the aim of understanding the localization topology correspondence for non periodic gapped quantum systems, we investigate the relation between the existence of an algebraically well-localized generalized Wannier basis and the topological triviality of the corresponding projection operator. Inspired by the work of M. Ludewig and G.C. Thiang, we consider the triviality of a projection in the sense of coarse geometry, i.e. as triviality in the $K_0$-theory of the Roe $C^*$-algebra of $\mathrm{R}^d$. We obtain in Theorem 2.8 a threshold, depending on the dimension, for the decay rate of the generalized Wannier functions which implies topological triviality in Roe sense. This threshold reduces, for $d = 2$, to the almost optimal threshold appearing in the Localization Dichotomy Conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信