渐近方法在曲线上不连续的静止解稳定性问题中的应用

Pub Date : 2024-07-18 DOI:10.1134/s0965542524700519
A. Liubavin, Mingkang Ni
{"title":"渐近方法在曲线上不连续的静止解稳定性问题中的应用","authors":"A. Liubavin, Mingkang Ni","doi":"10.1134/s0965542524700519","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This article is considering the stability property of the solution with inner layer for singularly perturbed stationary equation with Neumann boundary conditions. The right-hand side is assumed to have discontinuity on some arbitrary curve <span>\\(h(t)\\)</span>. Stability analysis is performed by obtaining the first non-zero coefficient of the series for eigenvalue and eigenfunction from the Sturm–Liouville problem. Theory of the asymptotic approximations is used in order to construct them.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Asymptotic Methods to the Question of Stability in Stationary Solution with Discontinuity on a Curve\",\"authors\":\"A. Liubavin, Mingkang Ni\",\"doi\":\"10.1134/s0965542524700519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This article is considering the stability property of the solution with inner layer for singularly perturbed stationary equation with Neumann boundary conditions. The right-hand side is assumed to have discontinuity on some arbitrary curve <span>\\\\(h(t)\\\\)</span>. Stability analysis is performed by obtaining the first non-zero coefficient of the series for eigenvalue and eigenfunction from the Sturm–Liouville problem. Theory of the asymptotic approximations is used in order to construct them.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文考虑的是具有 Neumann 边界条件的奇异扰动静止方程带内层解的稳定性。假设右侧在某条任意曲线上具有不连续性(h(t)\)。通过从 Sturm-Liouville 问题中获取特征值和特征函数序列的第一个非零系数来进行稳定性分析。为了构建它们,使用了渐近近似理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Application of Asymptotic Methods to the Question of Stability in Stationary Solution with Discontinuity on a Curve

Abstract

This article is considering the stability property of the solution with inner layer for singularly perturbed stationary equation with Neumann boundary conditions. The right-hand side is assumed to have discontinuity on some arbitrary curve \(h(t)\). Stability analysis is performed by obtaining the first non-zero coefficient of the series for eigenvalue and eigenfunction from the Sturm–Liouville problem. Theory of the asymptotic approximations is used in order to construct them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信