具有某些性质的通用 $$C^*$- 算法

IF 1.1 2区 数学 Q1 MATHEMATICS
Yifan Liu
{"title":"具有某些性质的通用 $$C^*$- 算法","authors":"Yifan Liu","doi":"10.1007/s43037-024-00372-8","DOIUrl":null,"url":null,"abstract":"<p>Let (<i>P</i>) be a property of <span>\\(C^*\\)</span>-algebras which may be satiesfied or not, and <span>\\(\\mathscr {S}(P)\\)</span> be the set of separable <span>\\(C^*\\)</span>-algebras which satiesfies (<i>P</i>). We give a sufficient condition for (<i>P</i>) to admit a universal separable element <span>\\(A\\in \\mathscr {S}(P)\\)</span> in the sense that for any <span>\\(B\\in \\mathscr {S}(P)\\)</span>, there exists a surjective <span>\\(*\\)</span>-homomorphism <span>\\(\\pi :A\\rightarrow B\\)</span>, and use the sufficient condition to show that when (<i>P</i>) is “unital with stable rank <i>n</i>”, “the small projection property” or “unital with stable exponential lenght <i>b</i>”, the sufficient condition is satisfied and hence there exists a corresponding universal <span>\\(C^*\\)</span>-algebra. We also give a stronger condition for property (<i>P</i>), which additionally implies that the set of corresponding universal <span>\\(C^*\\)</span>-algebras is uncountable, and use it to show that the set of universal unital separable <span>\\(C^*\\)</span>-algebras of stable rank <i>n</i> is uncountable as an example.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"65 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal $$C^*$$ -algebras of some properties\",\"authors\":\"Yifan Liu\",\"doi\":\"10.1007/s43037-024-00372-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let (<i>P</i>) be a property of <span>\\\\(C^*\\\\)</span>-algebras which may be satiesfied or not, and <span>\\\\(\\\\mathscr {S}(P)\\\\)</span> be the set of separable <span>\\\\(C^*\\\\)</span>-algebras which satiesfies (<i>P</i>). We give a sufficient condition for (<i>P</i>) to admit a universal separable element <span>\\\\(A\\\\in \\\\mathscr {S}(P)\\\\)</span> in the sense that for any <span>\\\\(B\\\\in \\\\mathscr {S}(P)\\\\)</span>, there exists a surjective <span>\\\\(*\\\\)</span>-homomorphism <span>\\\\(\\\\pi :A\\\\rightarrow B\\\\)</span>, and use the sufficient condition to show that when (<i>P</i>) is “unital with stable rank <i>n</i>”, “the small projection property” or “unital with stable exponential lenght <i>b</i>”, the sufficient condition is satisfied and hence there exists a corresponding universal <span>\\\\(C^*\\\\)</span>-algebra. We also give a stronger condition for property (<i>P</i>), which additionally implies that the set of corresponding universal <span>\\\\(C^*\\\\)</span>-algebras is uncountable, and use it to show that the set of universal unital separable <span>\\\\(C^*\\\\)</span>-algebras of stable rank <i>n</i> is uncountable as an example.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00372-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00372-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(P)是(C^*\)-数组的一个属性,它可能满足也可能不满足;\(\mathscr {S}(P)\) 是满足(P)的可分离的(C^*\)-数组的集合。我们给出了(P)的充分条件,即对于任意的(B),存在一个投射的(*)-同构(pi :),并用这个充分条件来证明当(P)是 "具有稳定秩 n 的唯一性"、"小投影性质 "或 "具有稳定指数长度 b 的唯一性 "时,充分条件是满足的,因此存在一个相应的通用 \(C^*\)- 代数。我们还为性质(P)给出了一个更强的条件,它另外意味着相应的普遍 \(C^*\)-代数的集合是不可数的,并以此为例证明了稳定秩为 n 的普遍可分离 \(C^*\)-代数的集合是不可数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal $$C^*$$ -algebras of some properties

Let (P) be a property of \(C^*\)-algebras which may be satiesfied or not, and \(\mathscr {S}(P)\) be the set of separable \(C^*\)-algebras which satiesfies (P). We give a sufficient condition for (P) to admit a universal separable element \(A\in \mathscr {S}(P)\) in the sense that for any \(B\in \mathscr {S}(P)\), there exists a surjective \(*\)-homomorphism \(\pi :A\rightarrow B\), and use the sufficient condition to show that when (P) is “unital with stable rank n”, “the small projection property” or “unital with stable exponential lenght b”, the sufficient condition is satisfied and hence there exists a corresponding universal \(C^*\)-algebra. We also give a stronger condition for property (P), which additionally implies that the set of corresponding universal \(C^*\)-algebras is uncountable, and use it to show that the set of universal unital separable \(C^*\)-algebras of stable rank n is uncountable as an example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信