对偶哈代空间中的考奇变换和斯格ő投影:不等式和莫比乌斯不变性

David E. Barrett, Luke D. Edholm
{"title":"对偶哈代空间中的考奇变换和斯格ő投影:不等式和莫比乌斯不变性","authors":"David E. Barrett, Luke D. Edholm","doi":"arxiv-2407.13033","DOIUrl":null,"url":null,"abstract":"Dual pairs of interior and exterior Hardy spaces associated to a simple\nclosed Lipschitz planar curve are considered, leading to a M\\\"obius invariant\nfunction bounding the norm of the Cauchy transform $\\bf{C}$ from below. This\nfunction is shown to satisfy strong rigidity properties and is closely\nconnected via the Berezin transform to the square of the Kerzman-Stein\noperator. Explicit example calculations are presented. For ellipses, a new\nasymptotically sharp lower bound on the norm of $\\bf{C}$ is produced.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cauchy transforms and Szegő projections in dual Hardy spaces: inequalities and Möbius invariance\",\"authors\":\"David E. Barrett, Luke D. Edholm\",\"doi\":\"arxiv-2407.13033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dual pairs of interior and exterior Hardy spaces associated to a simple\\nclosed Lipschitz planar curve are considered, leading to a M\\\\\\\"obius invariant\\nfunction bounding the norm of the Cauchy transform $\\\\bf{C}$ from below. This\\nfunction is shown to satisfy strong rigidity properties and is closely\\nconnected via the Berezin transform to the square of the Kerzman-Stein\\noperator. Explicit example calculations are presented. For ellipses, a new\\nasymptotically sharp lower bound on the norm of $\\\\bf{C}$ is produced.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了与简单封闭的利普希茨平面曲线相关的内部和外部哈代空间的双对,从而得出一个从下往上约束考奇变换 $\bf{C}$ 的规范的 M\"obius 不变函数。这个函数被证明满足强刚度特性,并通过贝雷津变换与凯尔兹曼-斯泰因算子的平方紧密相连。文中给出了明确的计算示例。对于椭圆,产生了一个关于 $\bf{C}$ 的规范的新的渐近尖锐下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cauchy transforms and Szegő projections in dual Hardy spaces: inequalities and Möbius invariance
Dual pairs of interior and exterior Hardy spaces associated to a simple closed Lipschitz planar curve are considered, leading to a M\"obius invariant function bounding the norm of the Cauchy transform $\bf{C}$ from below. This function is shown to satisfy strong rigidity properties and is closely connected via the Berezin transform to the square of the Kerzman-Stein operator. Explicit example calculations are presented. For ellipses, a new asymptotically sharp lower bound on the norm of $\bf{C}$ is produced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信