Ning Yin, Ke Wang, Nian Wang, Jun Tang, Wenxia Bao
{"title":"基于接触压力的三维人体姿态估计","authors":"Ning Yin, Ke Wang, Nian Wang, Jun Tang, Wenxia Bao","doi":"10.1117/1.jei.33.4.043022","DOIUrl":null,"url":null,"abstract":"Various daily behaviors usually exert pressure on the contact surface, such as lying, walking, and sitting. Obviously, the pressure data from the contact surface contain some important biological information for an individual. Recently, a computer vision task, i.e., pose estimation from contact pressure (PECP), has received more and more attention from researchers. Although several deep learning-based methods have been put forward in this field, they cannot achieve accurate prediction using the limited pressure information. To address this issue, we present a multi-task-based PECP model. Specifically, the autoencoder is introduced into our model for reconstructing input pressure data (i.e., the additional task), which can help our model generate high-quality features for the pressure data. Moreover, both the mean squared error and the spectral angle distance are adopted to construct the final loss function, whose aim is to eliminate the Euclidean distance and angle differences between the prediction and ground truth. Extensive experiments on the public dataset show that our method outperforms existing methods significantly in pose prediction from contact pressure.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional human pose estimation based on contact pressure\",\"authors\":\"Ning Yin, Ke Wang, Nian Wang, Jun Tang, Wenxia Bao\",\"doi\":\"10.1117/1.jei.33.4.043022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various daily behaviors usually exert pressure on the contact surface, such as lying, walking, and sitting. Obviously, the pressure data from the contact surface contain some important biological information for an individual. Recently, a computer vision task, i.e., pose estimation from contact pressure (PECP), has received more and more attention from researchers. Although several deep learning-based methods have been put forward in this field, they cannot achieve accurate prediction using the limited pressure information. To address this issue, we present a multi-task-based PECP model. Specifically, the autoencoder is introduced into our model for reconstructing input pressure data (i.e., the additional task), which can help our model generate high-quality features for the pressure data. Moreover, both the mean squared error and the spectral angle distance are adopted to construct the final loss function, whose aim is to eliminate the Euclidean distance and angle differences between the prediction and ground truth. Extensive experiments on the public dataset show that our method outperforms existing methods significantly in pose prediction from contact pressure.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Three-dimensional human pose estimation based on contact pressure
Various daily behaviors usually exert pressure on the contact surface, such as lying, walking, and sitting. Obviously, the pressure data from the contact surface contain some important biological information for an individual. Recently, a computer vision task, i.e., pose estimation from contact pressure (PECP), has received more and more attention from researchers. Although several deep learning-based methods have been put forward in this field, they cannot achieve accurate prediction using the limited pressure information. To address this issue, we present a multi-task-based PECP model. Specifically, the autoencoder is introduced into our model for reconstructing input pressure data (i.e., the additional task), which can help our model generate high-quality features for the pressure data. Moreover, both the mean squared error and the spectral angle distance are adopted to construct the final loss function, whose aim is to eliminate the Euclidean distance and angle differences between the prediction and ground truth. Extensive experiments on the public dataset show that our method outperforms existing methods significantly in pose prediction from contact pressure.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.