(2 + 1)维 Konopelchenko-Dubrovsky 方程的 Wronskian 解、Bäcklund 变换和 Painlevé 分析

Di Gao, Wen-Xiu Ma, Xing Lü
{"title":"(2 + 1)维 Konopelchenko-Dubrovsky 方程的 Wronskian 解、Bäcklund 变换和 Painlevé 分析","authors":"Di Gao, Wen-Xiu Ma, Xing Lü","doi":"10.1515/zna-2024-0016","DOIUrl":null,"url":null,"abstract":"The main work of this paper is to construct the Wronskian solution and investigate the integrability characteristics of the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Firstly, the Wronskian technique is used to acquire a sufficient condition of the Wronskian solution. According to the Wronskian form, the soliton solution is obtained by selecting the elements in the determinant that satisfy the linear partial differential systems. Secondly, the bilinear Bäcklund transformation and Bell-polynomial-typed Bäcklund transformation are derived directly via the Hirota bilinear method and the Bell polynomial theory, respectively. Finally, Painlevé analysis proves that this equation possesses the Painlevé property, and a Painlevé-typed Bäcklund transformation is constructed to solve a family of exact solutions by selecting appropriate seed solution. It shows that the Wronskian technique, Bäcklund transformation, Bell polynomial and Painlevé analysis are applicable to obtain the exact solutions of the nonlinear evolution equations, e.g., soliton solution, single-wave solution and two-wave solution.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2 + 1)-dimensional Konopelchenko–Dubrovsky equation\",\"authors\":\"Di Gao, Wen-Xiu Ma, Xing Lü\",\"doi\":\"10.1515/zna-2024-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main work of this paper is to construct the Wronskian solution and investigate the integrability characteristics of the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Firstly, the Wronskian technique is used to acquire a sufficient condition of the Wronskian solution. According to the Wronskian form, the soliton solution is obtained by selecting the elements in the determinant that satisfy the linear partial differential systems. Secondly, the bilinear Bäcklund transformation and Bell-polynomial-typed Bäcklund transformation are derived directly via the Hirota bilinear method and the Bell polynomial theory, respectively. Finally, Painlevé analysis proves that this equation possesses the Painlevé property, and a Painlevé-typed Bäcklund transformation is constructed to solve a family of exact solutions by selecting appropriate seed solution. It shows that the Wronskian technique, Bäcklund transformation, Bell polynomial and Painlevé analysis are applicable to obtain the exact solutions of the nonlinear evolution equations, e.g., soliton solution, single-wave solution and two-wave solution.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2024-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2024-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要工作是构建 Wronskian 解,并研究 (2 + 1) 维 Konopelchenko-Dubrovsky 方程的可整性特征。首先,利用沃伦斯基技术获得沃伦斯基解的充分条件。根据 Wronskian 形式,在行列式中选取满足线性偏微分方程的元素,即可得到孤子解。其次,分别通过 Hirota 双线性方法和贝尔多项式理论直接导出了双线性贝克隆变换和贝尔多项式型贝克隆变换。最后,Painlevé 分析证明了该方程具有 Painlevé 特性,并构建了 Painlevé 型 Bäcklund 变换,通过选择适当的种子解求解精确解族。研究表明,Wronskian 技术、Bäcklund 变换、贝尔多项式和 Painlevé 分析可用于获得非线性演化方程的精确解,如孤子解、单波解和双波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2 + 1)-dimensional Konopelchenko–Dubrovsky equation
The main work of this paper is to construct the Wronskian solution and investigate the integrability characteristics of the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Firstly, the Wronskian technique is used to acquire a sufficient condition of the Wronskian solution. According to the Wronskian form, the soliton solution is obtained by selecting the elements in the determinant that satisfy the linear partial differential systems. Secondly, the bilinear Bäcklund transformation and Bell-polynomial-typed Bäcklund transformation are derived directly via the Hirota bilinear method and the Bell polynomial theory, respectively. Finally, Painlevé analysis proves that this equation possesses the Painlevé property, and a Painlevé-typed Bäcklund transformation is constructed to solve a family of exact solutions by selecting appropriate seed solution. It shows that the Wronskian technique, Bäcklund transformation, Bell polynomial and Painlevé analysis are applicable to obtain the exact solutions of the nonlinear evolution equations, e.g., soliton solution, single-wave solution and two-wave solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信