防止因 tRNA 碱基变化导致重编码细胞逃逸和功能失常

Anush Chiappino-Pepe, Felix Radford, Bogdan Budnik, Huseyin Tas, Teresa L Augustin, Hana M Burgess, Michael Moret, Azim M Dharani, Qinmei Zheng, Weicheng Fan, Maksud M Afrikawala, Shova Thapa, Erkin Kuru, Kamesh Narasimhan, Jorge A Marchand, Ramiro Martin Perrotta, Jonathan M Stokes, Jeantine E Lunshof, John D Aach, Jenny M Tam, George M Church
{"title":"防止因 tRNA 碱基变化导致重编码细胞逃逸和功能失常","authors":"Anush Chiappino-Pepe, Felix Radford, Bogdan Budnik, Huseyin Tas, Teresa L Augustin, Hana M Burgess, Michael Moret, Azim M Dharani, Qinmei Zheng, Weicheng Fan, Maksud M Afrikawala, Shova Thapa, Erkin Kuru, Kamesh Narasimhan, Jorge A Marchand, Ramiro Martin Perrotta, Jonathan M Stokes, Jeantine E Lunshof, John D Aach, Jenny M Tam, George M Church","doi":"10.1101/2024.07.18.604179","DOIUrl":null,"url":null,"abstract":"Engineering the genetic code restricts DNA transfer (cellular bioisolation) and enables new chemistries via non-standard amino acid incorporation. These distinct properties make recoded cells state-of-the-art safe technologies. However, evolutionary pressures may endanger the longevity of the recoding. Here, we reveal that recoded Escherichia coli lacking 18,214 serine codons and two tRNASer can express wild-type antibiotic resistance genes and escape up to seven orders of magnitude faster than expected. We show a two-step escape process whereby recoded cells mistranslate antibiotic resistance genes to survive until modified or mutated tRNAs reintroduce serine into unassigned codons. We developed genetic-code-sensitive kill switches that sense serine incorporation and prevent cellular escape while preserving encoding of three distinct non-standard amino acids. This work lays the foundation for the long-term controlled function of cells that incorporate new chemistries, with implications for the design, use, and biosafety of synthetic genomes in clinical and environmental applications where physical containment is insufficient.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing escape and malfunction of recoded cells due to tRNA base changes\",\"authors\":\"Anush Chiappino-Pepe, Felix Radford, Bogdan Budnik, Huseyin Tas, Teresa L Augustin, Hana M Burgess, Michael Moret, Azim M Dharani, Qinmei Zheng, Weicheng Fan, Maksud M Afrikawala, Shova Thapa, Erkin Kuru, Kamesh Narasimhan, Jorge A Marchand, Ramiro Martin Perrotta, Jonathan M Stokes, Jeantine E Lunshof, John D Aach, Jenny M Tam, George M Church\",\"doi\":\"10.1101/2024.07.18.604179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering the genetic code restricts DNA transfer (cellular bioisolation) and enables new chemistries via non-standard amino acid incorporation. These distinct properties make recoded cells state-of-the-art safe technologies. However, evolutionary pressures may endanger the longevity of the recoding. Here, we reveal that recoded Escherichia coli lacking 18,214 serine codons and two tRNASer can express wild-type antibiotic resistance genes and escape up to seven orders of magnitude faster than expected. We show a two-step escape process whereby recoded cells mistranslate antibiotic resistance genes to survive until modified or mutated tRNAs reintroduce serine into unassigned codons. We developed genetic-code-sensitive kill switches that sense serine incorporation and prevent cellular escape while preserving encoding of three distinct non-standard amino acids. This work lays the foundation for the long-term controlled function of cells that incorporate new chemistries, with implications for the design, use, and biosafety of synthetic genomes in clinical and environmental applications where physical containment is insufficient.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.18.604179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.18.604179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因编码工程限制了 DNA 的转移(细胞生物分离),并通过非标准氨基酸的加入实现了新的化学反应。这些独特的特性使重新编码细胞成为最先进的安全技术。然而,进化压力可能会危及重编码的寿命。在这里,我们揭示了缺乏 18,214 个丝氨酸密码子和两个 tRNASer 的重编码大肠杆菌能够表达野生型抗生素耐药基因,而且逃逸速度比预期快七个数量级。我们展示了一个两步逃逸过程,在这一过程中,重新编码的细胞错误翻译抗生素抗性基因,直到修改或突变的 tRNA 将丝氨酸重新引入未指定的密码子中才得以存活。我们开发了对基因编码敏感的杀伤开关,它能感知丝氨酸的加入,防止细胞逃逸,同时保留三种不同的非标准氨基酸的编码。这项工作为长期控制加入新化学物质的细胞的功能奠定了基础,对临床和环境应用中物理封闭性不足的合成基因组的设计、使用和生物安全性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preventing escape and malfunction of recoded cells due to tRNA base changes
Engineering the genetic code restricts DNA transfer (cellular bioisolation) and enables new chemistries via non-standard amino acid incorporation. These distinct properties make recoded cells state-of-the-art safe technologies. However, evolutionary pressures may endanger the longevity of the recoding. Here, we reveal that recoded Escherichia coli lacking 18,214 serine codons and two tRNASer can express wild-type antibiotic resistance genes and escape up to seven orders of magnitude faster than expected. We show a two-step escape process whereby recoded cells mistranslate antibiotic resistance genes to survive until modified or mutated tRNAs reintroduce serine into unassigned codons. We developed genetic-code-sensitive kill switches that sense serine incorporation and prevent cellular escape while preserving encoding of three distinct non-standard amino acids. This work lays the foundation for the long-term controlled function of cells that incorporate new chemistries, with implications for the design, use, and biosafety of synthetic genomes in clinical and environmental applications where physical containment is insufficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信