Megan A. McSweeney, Alexandra T. Patterson, Kathryn Loeffler, Regina Cuellar Lelo de Larrea, Monica P. McNerney, Ravi S. Kane, Mark P. Styczynski
{"title":"使用分裂 T7 RNA 聚合酶的模块化无细胞蛋白质生物传感器平台","authors":"Megan A. McSweeney, Alexandra T. Patterson, Kathryn Loeffler, Regina Cuellar Lelo de Larrea, Monica P. McNerney, Ravi S. Kane, Mark P. Styczynski","doi":"10.1101/2024.07.19.604303","DOIUrl":null,"url":null,"abstract":"Conventional laboratory protein detection techniques are not suitable for point-of-care (POC) use because they require expensive equipment and laborious protocols, and existing POC assays suffer from long development timescales. Here, we describe a modular cell-free biosensing platform for generalizable protein detection that we call TLISA (T7 RNA polymerase-Linked ImmunoSensing Assay), designed for extreme flexibility and equipment-free use. TLISA uses a split T7 RNA polymerase fused to affinity domains against a protein. The target antigen drives polymerase reassembly, inducing reporter expression. We characterize the platform, then demonstrate its modularity by using 16 affinity domains against four different antigens with minimal protocol optimization. We show TLISA is suitable for POC use by sensing human biomarkers in serum and saliva with a colorimetric readout within one hour and by demonstrating functionality after lyophilization. Altogether, this technology could have potentially revolutionary impacts, enabling truly rapid, reconfigurable, equipment-free detection of virtually any protein.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modular cell-free protein biosensor platform using split T7 RNA polymerase\",\"authors\":\"Megan A. McSweeney, Alexandra T. Patterson, Kathryn Loeffler, Regina Cuellar Lelo de Larrea, Monica P. McNerney, Ravi S. Kane, Mark P. Styczynski\",\"doi\":\"10.1101/2024.07.19.604303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional laboratory protein detection techniques are not suitable for point-of-care (POC) use because they require expensive equipment and laborious protocols, and existing POC assays suffer from long development timescales. Here, we describe a modular cell-free biosensing platform for generalizable protein detection that we call TLISA (T7 RNA polymerase-Linked ImmunoSensing Assay), designed for extreme flexibility and equipment-free use. TLISA uses a split T7 RNA polymerase fused to affinity domains against a protein. The target antigen drives polymerase reassembly, inducing reporter expression. We characterize the platform, then demonstrate its modularity by using 16 affinity domains against four different antigens with minimal protocol optimization. We show TLISA is suitable for POC use by sensing human biomarkers in serum and saliva with a colorimetric readout within one hour and by demonstrating functionality after lyophilization. Altogether, this technology could have potentially revolutionary impacts, enabling truly rapid, reconfigurable, equipment-free detection of virtually any protein.\",\"PeriodicalId\":501408,\"journal\":{\"name\":\"bioRxiv - Synthetic Biology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.19.604303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.19.604303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A modular cell-free protein biosensor platform using split T7 RNA polymerase
Conventional laboratory protein detection techniques are not suitable for point-of-care (POC) use because they require expensive equipment and laborious protocols, and existing POC assays suffer from long development timescales. Here, we describe a modular cell-free biosensing platform for generalizable protein detection that we call TLISA (T7 RNA polymerase-Linked ImmunoSensing Assay), designed for extreme flexibility and equipment-free use. TLISA uses a split T7 RNA polymerase fused to affinity domains against a protein. The target antigen drives polymerase reassembly, inducing reporter expression. We characterize the platform, then demonstrate its modularity by using 16 affinity domains against four different antigens with minimal protocol optimization. We show TLISA is suitable for POC use by sensing human biomarkers in serum and saliva with a colorimetric readout within one hour and by demonstrating functionality after lyophilization. Altogether, this technology could have potentially revolutionary impacts, enabling truly rapid, reconfigurable, equipment-free detection of virtually any protein.