超越趋势跟踪:市场趋势预测的深度学习

Fernando Berzal, Alberto Garcia
{"title":"超越趋势跟踪:市场趋势预测的深度学习","authors":"Fernando Berzal, Alberto Garcia","doi":"arxiv-2407.13685","DOIUrl":null,"url":null,"abstract":"Trend following and momentum investing are common strategies employed by\nasset managers. Even though they can be helpful in the proper situations, they\nare limited in the sense that they work just by looking at past, as if we were\ndriving with our focus on the rearview mirror. In this paper, we advocate for\nthe use of Artificial Intelligence and Machine Learning techniques to predict\nfuture market trends. These predictions, when done properly, can improve the\nperformance of asset managers by increasing returns and reducing drawdowns.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Trend Following: Deep Learning for Market Trend Prediction\",\"authors\":\"Fernando Berzal, Alberto Garcia\",\"doi\":\"arxiv-2407.13685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trend following and momentum investing are common strategies employed by\\nasset managers. Even though they can be helpful in the proper situations, they\\nare limited in the sense that they work just by looking at past, as if we were\\ndriving with our focus on the rearview mirror. In this paper, we advocate for\\nthe use of Artificial Intelligence and Machine Learning techniques to predict\\nfuture market trends. These predictions, when done properly, can improve the\\nperformance of asset managers by increasing returns and reducing drawdowns.\",\"PeriodicalId\":501478,\"journal\":{\"name\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Trading and Market Microstructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.13685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

趋势跟踪和动量投资是资产经理常用的策略。尽管在适当的情况下它们会有所帮助,但它们的局限性在于,它们的作用仅仅是回顾过去,就好像我们开车时只盯着后视镜一样。在本文中,我们主张使用人工智能和机器学习技术来预测未来的市场趋势。如果方法得当,这些预测可以通过增加回报和减少缩水来提高资产经理的业绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond Trend Following: Deep Learning for Market Trend Prediction
Trend following and momentum investing are common strategies employed by asset managers. Even though they can be helpful in the proper situations, they are limited in the sense that they work just by looking at past, as if we were driving with our focus on the rearview mirror. In this paper, we advocate for the use of Artificial Intelligence and Machine Learning techniques to predict future market trends. These predictions, when done properly, can improve the performance of asset managers by increasing returns and reducing drawdowns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信