涉及整数及其最大质因数互积的两个和的贝克十几位数

Tengiz O. Gogoberidze
{"title":"涉及整数及其最大质因数互积的两个和的贝克十几位数","authors":"Tengiz O. Gogoberidze","doi":"arxiv-2407.12047","DOIUrl":null,"url":null,"abstract":"Two sums over the inverse of the product of an integer n and its greatest\nprime factor G(n), are computed to first 13 decimal digits. These sums\nconverge, but converge very slowly. They are transformed into sums involving\nMertens' prime product with the remainder term which are estimated by means of\nChebyshev's {\\theta}-function.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baker's dozen digits of two sums involving reciprocal products of an integer and its greatest prime factor\",\"authors\":\"Tengiz O. Gogoberidze\",\"doi\":\"arxiv-2407.12047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two sums over the inverse of the product of an integer n and its greatest\\nprime factor G(n), are computed to first 13 decimal digits. These sums\\nconverge, but converge very slowly. They are transformed into sums involving\\nMertens' prime product with the remainder term which are estimated by means of\\nChebyshev's {\\\\theta}-function.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对整数 n 及其最大质因数 G(n) 的乘积的倒数的两个和计算到小数点后 13 位。这些和收敛了,但收敛得很慢。它们被转化为涉及梅尔腾斯素数乘积与余项的和,这些和是通过切比雪夫的{\theta}函数估算出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Baker's dozen digits of two sums involving reciprocal products of an integer and its greatest prime factor
Two sums over the inverse of the product of an integer n and its greatest prime factor G(n), are computed to first 13 decimal digits. These sums converge, but converge very slowly. They are transformed into sums involving Mertens' prime product with the remainder term which are estimated by means of Chebyshev's {\theta}-function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信