图线性典型变换:定义、顶点频率分析和滤波器设计

Jian Yi Chen, Bing Zhao Li
{"title":"图线性典型变换:定义、顶点频率分析和滤波器设计","authors":"Jian Yi Chen, Bing Zhao Li","doi":"arxiv-2407.12046","DOIUrl":null,"url":null,"abstract":"This paper proposes a graph linear canonical transform (GLCT) by decomposing\nthe linear canonical parameter matrix into fractional Fourier transform, scale\ntransform, and chirp modulation for graph signal processing. The GLCT enables\nadjustable smoothing modes, enhancing alignment with graph signals. Leveraging\ntraditional fractional domain time-frequency analysis, we investigate\nvertex-frequency analysis in the graph linear canonical domain, aiming to\novercome limitations in capturing local information. Filter design methods,\nincluding optimal design and learning with stochastic gradient descent, are\nanalyzed and applied to image classification tasks. The proposed GLCT and\nvertex-frequency analysis present innovative approaches to signal processing\nchallenges, with potential applications in various fields.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Linear Canonical Transform: Definition, Vertex-Frequency Analysis and Filter Design\",\"authors\":\"Jian Yi Chen, Bing Zhao Li\",\"doi\":\"arxiv-2407.12046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a graph linear canonical transform (GLCT) by decomposing\\nthe linear canonical parameter matrix into fractional Fourier transform, scale\\ntransform, and chirp modulation for graph signal processing. The GLCT enables\\nadjustable smoothing modes, enhancing alignment with graph signals. Leveraging\\ntraditional fractional domain time-frequency analysis, we investigate\\nvertex-frequency analysis in the graph linear canonical domain, aiming to\\novercome limitations in capturing local information. Filter design methods,\\nincluding optimal design and learning with stochastic gradient descent, are\\nanalyzed and applied to image classification tasks. The proposed GLCT and\\nvertex-frequency analysis present innovative approaches to signal processing\\nchallenges, with potential applications in various fields.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过将线性典型参数矩阵分解为分数傅里叶变换、标量变换和啁啾调制,提出了一种图线性典型变换(GLCT),用于图信号处理。GLCT 支持可调节的平滑模式,增强了与图形信号的一致性。利用传统的分数域时频分析,我们研究了图线性规范域中的evertex-frequency分析,旨在克服捕捉局部信息的局限性。我们分析了滤波器设计方法,包括最优设计和随机梯度下降学习,并将其应用于图像分类任务。所提出的 GLCT 和顶点频率分析提出了解决信号处理难题的创新方法,有望应用于各个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Linear Canonical Transform: Definition, Vertex-Frequency Analysis and Filter Design
This paper proposes a graph linear canonical transform (GLCT) by decomposing the linear canonical parameter matrix into fractional Fourier transform, scale transform, and chirp modulation for graph signal processing. The GLCT enables adjustable smoothing modes, enhancing alignment with graph signals. Leveraging traditional fractional domain time-frequency analysis, we investigate vertex-frequency analysis in the graph linear canonical domain, aiming to overcome limitations in capturing local information. Filter design methods, including optimal design and learning with stochastic gradient descent, are analyzed and applied to image classification tasks. The proposed GLCT and vertex-frequency analysis present innovative approaches to signal processing challenges, with potential applications in various fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信