论利用梅腾斯函数的显式阶次估计值证明拉马努扬不等式

Subham De
{"title":"论利用梅腾斯函数的显式阶次估计值证明拉马努扬不等式","authors":"Subham De","doi":"arxiv-2407.12052","DOIUrl":null,"url":null,"abstract":"This research article provides an unconditional proof of an inequality\nproposed by \\textit{Srinivasa Ramanujan} involving the Prime Counting Function\n$\\pi(x)$, \\begin{align*} (\\pi(x))^{2}<\\frac{ex}{\\log\nx}\\pi\\left(\\frac{x}{e}\\right) \\end{align*} for every real $x\\geq \\exp(1486)$,\nusing specific order estimates of the \\textit{Mertens Function}, $M(x)$. The\nproof primarily hinges upon investigating the underlying relation between\n$M(x)$ and the \\textit{Second Chebyshev Function}, $\\psi(x)$, in addition to\napplying the meromorphic properties of the \\textit{Riemann Zeta Function},\n$\\zeta(s)$ with an intention of deriving an improved approximation for\n$\\pi(x)$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"172 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On proving an Inequality of Ramanujan using Explicit Order Estimates of the Mertens Function\",\"authors\":\"Subham De\",\"doi\":\"arxiv-2407.12052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research article provides an unconditional proof of an inequality\\nproposed by \\\\textit{Srinivasa Ramanujan} involving the Prime Counting Function\\n$\\\\pi(x)$, \\\\begin{align*} (\\\\pi(x))^{2}<\\\\frac{ex}{\\\\log\\nx}\\\\pi\\\\left(\\\\frac{x}{e}\\\\right) \\\\end{align*} for every real $x\\\\geq \\\\exp(1486)$,\\nusing specific order estimates of the \\\\textit{Mertens Function}, $M(x)$. The\\nproof primarily hinges upon investigating the underlying relation between\\n$M(x)$ and the \\\\textit{Second Chebyshev Function}, $\\\\psi(x)$, in addition to\\napplying the meromorphic properties of the \\\\textit{Riemann Zeta Function},\\n$\\\\zeta(s)$ with an intention of deriving an improved approximation for\\n$\\\\pi(x)$.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"172 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章无条件地证明了斯里尼瓦萨-拉曼努强(Srinivasa Ramanujan)提出的涉及质数计数函数$\pi(x)$的不等式、\begin{align*} (\pi(x))^{2}<\frac{ex}{\logx}\pi/left(\frac{x}{e}/right) \end{align*} for every real $x\geq \exp(1486)$, using specific order estimates of the \textit{Mertens Function}, $M(x)$.这个证明主要依赖于研究$M(x)$和\textit{Second Chebyshev Function}, $\psi(x)$之间的基本关系,此外还应用了\textit{Riemann Zeta Function}, $\zeta(s)$的非定常性质,目的是得出$pi(x)$的改进近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On proving an Inequality of Ramanujan using Explicit Order Estimates of the Mertens Function
This research article provides an unconditional proof of an inequality proposed by \textit{Srinivasa Ramanujan} involving the Prime Counting Function $\pi(x)$, \begin{align*} (\pi(x))^{2}<\frac{ex}{\log x}\pi\left(\frac{x}{e}\right) \end{align*} for every real $x\geq \exp(1486)$, using specific order estimates of the \textit{Mertens Function}, $M(x)$. The proof primarily hinges upon investigating the underlying relation between $M(x)$ and the \textit{Second Chebyshev Function}, $\psi(x)$, in addition to applying the meromorphic properties of the \textit{Riemann Zeta Function}, $\zeta(s)$ with an intention of deriving an improved approximation for $\pi(x)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信