利用逆合成模型直接优化生成式分子设计中的可合成性

Jeff Guo, Philippe Schwaller
{"title":"利用逆合成模型直接优化生成式分子设计中的可合成性","authors":"Jeff Guo, Philippe Schwaller","doi":"arxiv-2407.12186","DOIUrl":null,"url":null,"abstract":"Synthesizability in generative molecular design remains a pressing challenge.\nExisting methods to assess synthesizability span heuristics-based methods,\nretrosynthesis models, and synthesizability-constrained molecular generation.\nThe latter has become increasingly prevalent and proceeds by defining a set of\npermitted actions a model can take when generating molecules, such that all\ngenerations are anchored in \"synthetically-feasible\" chemical transformations.\nTo date, retrosynthesis models have been mostly used as a post-hoc filtering\ntool as their inference cost remains prohibitive to use directly in an\noptimization loop. In this work, we show that with a sufficiently\nsample-efficient generative model, it is straightforward to directly optimize\nfor synthesizability using retrosynthesis models in goal-directed generation.\nUnder a heavily-constrained computational budget, our model can generate\nmolecules satisfying a multi-parameter drug discovery optimization task while\nbeing synthesizable, as deemed by the retrosynthesis model.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directly Optimizing for Synthesizability in Generative Molecular Design using Retrosynthesis Models\",\"authors\":\"Jeff Guo, Philippe Schwaller\",\"doi\":\"arxiv-2407.12186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesizability in generative molecular design remains a pressing challenge.\\nExisting methods to assess synthesizability span heuristics-based methods,\\nretrosynthesis models, and synthesizability-constrained molecular generation.\\nThe latter has become increasingly prevalent and proceeds by defining a set of\\npermitted actions a model can take when generating molecules, such that all\\ngenerations are anchored in \\\"synthetically-feasible\\\" chemical transformations.\\nTo date, retrosynthesis models have been mostly used as a post-hoc filtering\\ntool as their inference cost remains prohibitive to use directly in an\\noptimization loop. In this work, we show that with a sufficiently\\nsample-efficient generative model, it is straightforward to directly optimize\\nfor synthesizability using retrosynthesis models in goal-directed generation.\\nUnder a heavily-constrained computational budget, our model can generate\\nmolecules satisfying a multi-parameter drug discovery optimization task while\\nbeing synthesizable, as deemed by the retrosynthesis model.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的评估可合成性的方法包括基于启发式的方法、逆合成模型和受可合成性约束的分子生成。后者已变得越来越普遍,其方法是定义一组模型在生成分子时可以采取的允许行动,从而使所有生成都以 "合成可行 "的化学转化为基础。在这项工作中,我们证明了只要有足够高的样本效率生成模型,就可以在目标导向生成中使用逆合成模型直接优化可合成性。在计算预算严重受限的情况下,我们的模型可以生成满足多参数药物发现优化任务的分子,同时又是逆合成模型认为可合成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Directly Optimizing for Synthesizability in Generative Molecular Design using Retrosynthesis Models
Synthesizability in generative molecular design remains a pressing challenge. Existing methods to assess synthesizability span heuristics-based methods, retrosynthesis models, and synthesizability-constrained molecular generation. The latter has become increasingly prevalent and proceeds by defining a set of permitted actions a model can take when generating molecules, such that all generations are anchored in "synthetically-feasible" chemical transformations. To date, retrosynthesis models have been mostly used as a post-hoc filtering tool as their inference cost remains prohibitive to use directly in an optimization loop. In this work, we show that with a sufficiently sample-efficient generative model, it is straightforward to directly optimize for synthesizability using retrosynthesis models in goal-directed generation. Under a heavily-constrained computational budget, our model can generate molecules satisfying a multi-parameter drug discovery optimization task while being synthesizable, as deemed by the retrosynthesis model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信