{"title":"IIA 型气流的特殊解决方案","authors":"Alberto Raffero","doi":"10.4310/mrl.2023.v30.n6.a8","DOIUrl":null,"url":null,"abstract":"We consider the source-free Type IIA flow introduced by Fei–Phong–Picard–Zhang $\\href{https://dx.doi.org/10.4310/CJM.2021.v9.n3.a3}{\\textrm{[10]}}$, and we study it in the case where the relevant geometric datum is a symplectic half-flat SU(3)-structure. We show the existence of ancient, immortal and eternal solutions to the flow, provided that the initial symplectic half-flat structure satisfies suitable properties. In particular, we prove that the solution starting at a symplectic half-flat structure with Hermitian Ricci tensor is ancient and evolves self-similarly by scaling the initial datum. These results apply to all known (locally) homogeneous spaces admitting invariant symplectic half-flat SU(3)-structures.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special solutions to the Type IIA flow\",\"authors\":\"Alberto Raffero\",\"doi\":\"10.4310/mrl.2023.v30.n6.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the source-free Type IIA flow introduced by Fei–Phong–Picard–Zhang $\\\\href{https://dx.doi.org/10.4310/CJM.2021.v9.n3.a3}{\\\\textrm{[10]}}$, and we study it in the case where the relevant geometric datum is a symplectic half-flat SU(3)-structure. We show the existence of ancient, immortal and eternal solutions to the flow, provided that the initial symplectic half-flat structure satisfies suitable properties. In particular, we prove that the solution starting at a symplectic half-flat structure with Hermitian Ricci tensor is ancient and evolves self-similarly by scaling the initial datum. These results apply to all known (locally) homogeneous spaces admitting invariant symplectic half-flat SU(3)-structures.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n6.a8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider the source-free Type IIA flow introduced by Fei–Phong–Picard–Zhang $\href{https://dx.doi.org/10.4310/CJM.2021.v9.n3.a3}{\textrm{[10]}}$, and we study it in the case where the relevant geometric datum is a symplectic half-flat SU(3)-structure. We show the existence of ancient, immortal and eternal solutions to the flow, provided that the initial symplectic half-flat structure satisfies suitable properties. In particular, we prove that the solution starting at a symplectic half-flat structure with Hermitian Ricci tensor is ancient and evolves self-similarly by scaling the initial datum. These results apply to all known (locally) homogeneous spaces admitting invariant symplectic half-flat SU(3)-structures.
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.