参数化凯勒类和扎里斯基密集轨道 1-同调

Pub Date : 2024-07-17 DOI:10.4310/mrl.2023.v30.n6.a9
Filippo Sarti, Alessio Savini
{"title":"参数化凯勒类和扎里斯基密集轨道 1-同调","authors":"Filippo Sarti, Alessio Savini","doi":"10.4310/mrl.2023.v30.n6.a9","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a finitely generated group and let $(X,\\mu_X)$ be an ergodic standard Borel probability $\\Gamma$-space. Suppose that $\\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\\operatorname{Isom}(\\mathcal{X})^{\\circ}$ is simple. Given a Zariski dense measurable cocycle $\\sigma:\\Gamma \\times X \\to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametrized Kähler class and Zariski dense orbital 1-cohomology\",\"authors\":\"Filippo Sarti, Alessio Savini\",\"doi\":\"10.4310/mrl.2023.v30.n6.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Gamma$ be a finitely generated group and let $(X,\\\\mu_X)$ be an ergodic standard Borel probability $\\\\Gamma$-space. Suppose that $\\\\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\\\\operatorname{Isom}(\\\\mathcal{X})^{\\\\circ}$ is simple. Given a Zariski dense measurable cocycle $\\\\sigma:\\\\Gamma \\\\times X \\\\to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n6.a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\Gamma$ 是一个有限生成的群,让 $(X,\mu_X)$ 是一个遍历标准伯尔概率 $\Gamma$ 空间。假设$(X,\mu_X)$ 是一个不属于管型的赫米蒂对称空间,并假设$G=\operatorname{Isom}(\mathcal{X})^{\circ}$ 是简单的。给定一个扎里斯基密集可测环 $\sigma:\Gamma \times X \to G$,我们定义了参数化凯勒类的概念,并证明它完全决定了这个环的同调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Parametrized Kähler class and Zariski dense orbital 1-cohomology
Let $\Gamma$ be a finitely generated group and let $(X,\mu_X)$ be an ergodic standard Borel probability $\Gamma$-space. Suppose that $\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\operatorname{Isom}(\mathcal{X})^{\circ}$ is simple. Given a Zariski dense measurable cocycle $\sigma:\Gamma \times X \to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信