{"title":"参数化凯勒类和扎里斯基密集轨道 1-同调","authors":"Filippo Sarti, Alessio Savini","doi":"10.4310/mrl.2023.v30.n6.a9","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a finitely generated group and let $(X,\\mu_X)$ be an ergodic standard Borel probability $\\Gamma$-space. Suppose that $\\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\\operatorname{Isom}(\\mathcal{X})^{\\circ}$ is simple. Given a Zariski dense measurable cocycle $\\sigma:\\Gamma \\times X \\to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametrized Kähler class and Zariski dense orbital 1-cohomology\",\"authors\":\"Filippo Sarti, Alessio Savini\",\"doi\":\"10.4310/mrl.2023.v30.n6.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Gamma$ be a finitely generated group and let $(X,\\\\mu_X)$ be an ergodic standard Borel probability $\\\\Gamma$-space. Suppose that $\\\\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\\\\operatorname{Isom}(\\\\mathcal{X})^{\\\\circ}$ is simple. Given a Zariski dense measurable cocycle $\\\\sigma:\\\\Gamma \\\\times X \\\\to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n6.a9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parametrized Kähler class and Zariski dense orbital 1-cohomology
Let $\Gamma$ be a finitely generated group and let $(X,\mu_X)$ be an ergodic standard Borel probability $\Gamma$-space. Suppose that $\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\operatorname{Isom}(\mathcal{X})^{\circ}$ is simple. Given a Zariski dense measurable cocycle $\sigma:\Gamma \times X \to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.