协球或同位球上的格鲁克捻转

IF 0.6 3区 数学 Q3 MATHEMATICS
Daniel Kasprowski, Mark Powell, Arunima Ray
{"title":"协球或同位球上的格鲁克捻转","authors":"Daniel Kasprowski, Mark Powell, Arunima Ray","doi":"10.4310/mrl.2023.v30.n6.a6","DOIUrl":null,"url":null,"abstract":"Let $M$ be a compact 4-manifold and let $S$ and $T$ be embedded $2$-spheres in $M$, both with trivial normal bundle. We write $M_{S}$ and $M_T$ for the 4-manifolds obtained by the Gluck twist operation on $M$ along $S$ and $T$ respectively. We show that if $S$ and $T$ are concordant, then $M_S$ and $M_T$ are $s$-cobordant, and so if $\\pi_1(M)$ is good, then $M_S$ and $M_T$ are homeomorphic. Similarly, if $S$ and $T$ are homotopic then we show that $M_S$ and $M_T$ are simple homotopy equivalent.Under some further assumptions, we deduce th $M_S$ and $M_T$ are homeomorphic. We show that additional assumptions are necessary by giving an example where $S$ and $T$ are homotopic but $M_S$ and $M_T$ are not homeomorphic. We also give an example where $S$ and $T$ are homotopic and $M_S$ and $M_T$ are homeomorphic but not diffeomorphic.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"64 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gluck twists on concordant or homotopic spheres\",\"authors\":\"Daniel Kasprowski, Mark Powell, Arunima Ray\",\"doi\":\"10.4310/mrl.2023.v30.n6.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a compact 4-manifold and let $S$ and $T$ be embedded $2$-spheres in $M$, both with trivial normal bundle. We write $M_{S}$ and $M_T$ for the 4-manifolds obtained by the Gluck twist operation on $M$ along $S$ and $T$ respectively. We show that if $S$ and $T$ are concordant, then $M_S$ and $M_T$ are $s$-cobordant, and so if $\\\\pi_1(M)$ is good, then $M_S$ and $M_T$ are homeomorphic. Similarly, if $S$ and $T$ are homotopic then we show that $M_S$ and $M_T$ are simple homotopy equivalent.Under some further assumptions, we deduce th $M_S$ and $M_T$ are homeomorphic. We show that additional assumptions are necessary by giving an example where $S$ and $T$ are homotopic but $M_S$ and $M_T$ are not homeomorphic. We also give an example where $S$ and $T$ are homotopic and $M_S$ and $M_T$ are homeomorphic but not diffeomorphic.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n6.a6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 $M$ 是一个紧凑的 4-manifold,假设 $S$ 和 $T$ 是嵌入 $M$ 的 2$球体,两者都有微不足道的法向束。我们分别用 $M_{S}$ 和 $M_T$ 表示对 $M$ 沿 $S$ 和 $T$ 进行格鲁克扭转操作后得到的 4-manifold。我们证明,如果 $S$ 和 $T$ 是协整的,那么 $M_S$ 和 $M_T$ 就是 $s$ 协整的,因此如果 $\pi_1(M)$ 是好的,那么 $M_S$ 和 $M_T$ 就是同构的。同样,如果 $S$ 和 $T$ 是同构的,那么我们证明 $M_S$ 和 $M_T$ 是简单同构等价的。我们通过举例说明额外的假设是必要的,即$S$和$T$是同构的,但$M_S$和$M_T$不是同构的。我们还举例说明$S$和$T$是同构的,而$M_S$和$M_T$是同构的,但不是差分同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gluck twists on concordant or homotopic spheres
Let $M$ be a compact 4-manifold and let $S$ and $T$ be embedded $2$-spheres in $M$, both with trivial normal bundle. We write $M_{S}$ and $M_T$ for the 4-manifolds obtained by the Gluck twist operation on $M$ along $S$ and $T$ respectively. We show that if $S$ and $T$ are concordant, then $M_S$ and $M_T$ are $s$-cobordant, and so if $\pi_1(M)$ is good, then $M_S$ and $M_T$ are homeomorphic. Similarly, if $S$ and $T$ are homotopic then we show that $M_S$ and $M_T$ are simple homotopy equivalent.Under some further assumptions, we deduce th $M_S$ and $M_T$ are homeomorphic. We show that additional assumptions are necessary by giving an example where $S$ and $T$ are homotopic but $M_S$ and $M_T$ are not homeomorphic. We also give an example where $S$ and $T$ are homotopic and $M_S$ and $M_T$ are homeomorphic but not diffeomorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信