论一般类型三褶的数值琐碎自形

IF 0.6 3区 数学 Q3 MATHEMATICS
Zhi Jiang, Wenfei Liu, Hang Zhao
{"title":"论一般类型三褶的数值琐碎自形","authors":"Zhi Jiang, Wenfei Liu, Hang Zhao","doi":"10.4310/mrl.2023.v30.n6.a5","DOIUrl":null,"url":null,"abstract":"$\\def\\AutQx{\\mathrm{Aut}_\\mathbb{Q}(X)}$ In this paper, we prove that the group $\\AutQx$ of numerically trivial automorphisms are uniformly bounded for smooth projective threefolds X of general type which either satisfy $q(X) \\geq 3$ or have a Gorenstein minimal model. If X is furthermore of maximal Albanese dimension, then $\\lvert \\AutQx \\rvert \\leq 4$, and the equality can be achieved by an unbounded family of threefolds previously constructed by the third author. Along the way we prove a Noether type inequality for log canonical pairs of general type with the coefficients of the boundary divisor from a given subset $\\mathcal{C} \\subset (0, 1]$ such that $\\mathcal{C} \\cup \\{1\\}$ attains the minimum.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"76 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On numerically trivial automorphisms of threefolds of general type\",\"authors\":\"Zhi Jiang, Wenfei Liu, Hang Zhao\",\"doi\":\"10.4310/mrl.2023.v30.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\AutQx{\\\\mathrm{Aut}_\\\\mathbb{Q}(X)}$ In this paper, we prove that the group $\\\\AutQx$ of numerically trivial automorphisms are uniformly bounded for smooth projective threefolds X of general type which either satisfy $q(X) \\\\geq 3$ or have a Gorenstein minimal model. If X is furthermore of maximal Albanese dimension, then $\\\\lvert \\\\AutQx \\\\rvert \\\\leq 4$, and the equality can be achieved by an unbounded family of threefolds previously constructed by the third author. Along the way we prove a Noether type inequality for log canonical pairs of general type with the coefficients of the boundary divisor from a given subset $\\\\mathcal{C} \\\\subset (0, 1]$ such that $\\\\mathcal{C} \\\\cup \\\\{1\\\\}$ attains the minimum.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n6.a5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

$\def\AutQx{\mathrm{Aut}_\mathbb{Q}(X)}$ 在本文中,我们证明了对于满足 $q(X) \geq 3$ 或具有戈伦斯坦极小模型的一般类型的光滑投影三褶 X,数值琐碎自形的组 $\AutQx$ 是均匀有界的。如果 X 还具有最大阿尔巴尼维度,那么 $\lvert \AutQx \rvert \leq 4$,这个相等可以通过第三作者之前构建的一个无界三折叠族来实现。在此过程中,我们证明了一般类型的对数对与来自给定子集 $\mathcal{C} 的边界除数系数的诺特式不等式。\子集 (0, 1]$ 这样 $\mathcal{C}\达到最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On numerically trivial automorphisms of threefolds of general type
$\def\AutQx{\mathrm{Aut}_\mathbb{Q}(X)}$ In this paper, we prove that the group $\AutQx$ of numerically trivial automorphisms are uniformly bounded for smooth projective threefolds X of general type which either satisfy $q(X) \geq 3$ or have a Gorenstein minimal model. If X is furthermore of maximal Albanese dimension, then $\lvert \AutQx \rvert \leq 4$, and the equality can be achieved by an unbounded family of threefolds previously constructed by the third author. Along the way we prove a Noether type inequality for log canonical pairs of general type with the coefficients of the boundary divisor from a given subset $\mathcal{C} \subset (0, 1]$ such that $\mathcal{C} \cup \{1\}$ attains the minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信