{"title":"关于一些三角函数级数的封闭形式","authors":"Slobodan B. Tričković, Miomir S. Stanković","doi":"arxiv-2407.12885","DOIUrl":null,"url":null,"abstract":"We have derived alternative closed-form formulas for the trigonometric series\nover sine or cosine functions when the immediate replacement of the parameter\nappearing in the denominator with a positive integer gives rise to a\nsingularity. By applying the Choi-Srivastava theorem, we reduce these\ntrigonometric series to expressions over Hurwitz's zeta function derivative.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On closed forms of some trigonometric series\",\"authors\":\"Slobodan B. Tričković, Miomir S. Stanković\",\"doi\":\"arxiv-2407.12885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have derived alternative closed-form formulas for the trigonometric series\\nover sine or cosine functions when the immediate replacement of the parameter\\nappearing in the denominator with a positive integer gives rise to a\\nsingularity. By applying the Choi-Srivastava theorem, we reduce these\\ntrigonometric series to expressions over Hurwitz's zeta function derivative.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We have derived alternative closed-form formulas for the trigonometric series
over sine or cosine functions when the immediate replacement of the parameter
appearing in the denominator with a positive integer gives rise to a
singularity. By applying the Choi-Srivastava theorem, we reduce these
trigonometric series to expressions over Hurwitz's zeta function derivative.