带随机字母的离散康托尔集合的分形不确定性原理

IF 0.6 3区 数学 Q3 MATHEMATICS
Suresh Eswarathasan, Xiaolong Han
{"title":"带随机字母的离散康托尔集合的分形不确定性原理","authors":"Suresh Eswarathasan, Xiaolong Han","doi":"10.4310/mrl.2023.v30.n6.a2","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the fractal uncertainty principle (FUP) for discrete Cantor sets, which are determined by an alphabet from a base of digits. Consider the base of $M$ digits and the alphabets of cardinality $A$ such that all the corresponding Cantor sets have a fixed dimension $\\log A/\\log M\\in (0,2/3)$. We prove that the FUP with an improved exponent over Dyatlov-Jin $\\href{https://doi.org/10.48550/arXiv.2107.08276}{\\textrm{DJ-1}}$ holds for almost all alphabets, asymptotically as $M\\to\\infty$. Our result provides the best possible exponent when the Cantor sets enjoy either the strongest Fourier decay assumption or strongest additive energy assumption. The proof is based on a concentration of measure phenomenon in the space of alphabets.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal uncertainty principle for discrete Cantor sets with random alphabets\",\"authors\":\"Suresh Eswarathasan, Xiaolong Han\",\"doi\":\"10.4310/mrl.2023.v30.n6.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the fractal uncertainty principle (FUP) for discrete Cantor sets, which are determined by an alphabet from a base of digits. Consider the base of $M$ digits and the alphabets of cardinality $A$ such that all the corresponding Cantor sets have a fixed dimension $\\\\log A/\\\\log M\\\\in (0,2/3)$. We prove that the FUP with an improved exponent over Dyatlov-Jin $\\\\href{https://doi.org/10.48550/arXiv.2107.08276}{\\\\textrm{DJ-1}}$ holds for almost all alphabets, asymptotically as $M\\\\to\\\\infty$. Our result provides the best possible exponent when the Cantor sets enjoy either the strongest Fourier decay assumption or strongest additive energy assumption. The proof is based on a concentration of measure phenomenon in the space of alphabets.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n6.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了离散康托集合的分形不确定性原理(FUP),康托集合是由数字基数的字母表决定的。考虑由 $M$ 数字组成的基数和 cardinality $A$ 的字母表,所有相应的 Cantor 集都有一个固定维度 $\log A/\log M\in (0,2/3)$。我们证明,对于几乎所有的字母集,FUP 的指数都比 Dyatlov-Jin $\href{https://doi.org/10.48550/arXiv.2107.08276}{\textrm{DJ-1}}$ 高,且渐近于 $M\to\infty$。当康托集合享有最强傅里叶衰变假设或最强加法能量假设时,我们的结果提供了可能的最佳指数。证明基于字母空间中的度量集中现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractal uncertainty principle for discrete Cantor sets with random alphabets
In this paper, we investigate the fractal uncertainty principle (FUP) for discrete Cantor sets, which are determined by an alphabet from a base of digits. Consider the base of $M$ digits and the alphabets of cardinality $A$ such that all the corresponding Cantor sets have a fixed dimension $\log A/\log M\in (0,2/3)$. We prove that the FUP with an improved exponent over Dyatlov-Jin $\href{https://doi.org/10.48550/arXiv.2107.08276}{\textrm{DJ-1}}$ holds for almost all alphabets, asymptotically as $M\to\infty$. Our result provides the best possible exponent when the Cantor sets enjoy either the strongest Fourier decay assumption or strongest additive energy assumption. The proof is based on a concentration of measure phenomenon in the space of alphabets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信