{"title":"带有符号变化权重的特鲁丁格-莫泽尔不等式的极值函数","authors":"Pengxiu Yu, Xiaobao Zhu","doi":"10.1007/s11118-024-10159-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((\\Sigma ,g)\\)</span> be a closed Riemann surface, <span>\\(\\lambda _1(\\Sigma )\\)</span> be the first eigenvalue of the Laplace-Beltrami operator. Assume <span>\\(h:\\Sigma \\rightarrow \\mathbb {R}\\)</span> is some smooth sign-changing function. Using blow-up analysis, we prove that for any <span>\\(\\alpha <\\lambda _1(\\Sigma )\\)</span>, the supremum </p><span>$$\\sup _{\\int _\\Sigma |\\nabla _gu|^2dv_g-\\alpha \\int _\\Sigma u^2dv_g\\le 1,\\,\\int _\\Sigma udv_g=0}\\int _\\Sigma he^{4\\pi u^2}dv_g$$</span><p>is attained by some admissible function <span>\\(u_\\alpha \\)</span>. This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations </p><span>$$\\Delta _gu=8\\pi \\left( \\frac{he^u}{\\int _\\Sigma he^udv_g}-\\frac{1}{|\\Sigma |}\\right) ,$$</span><p>where <i>h</i> is a smooth sign-changing function. Such problems were extensively studied by L. Sun and J. Y. Zhu (Cal. Var. 2021; arXiv: 2012.12840).</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"93 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Functions for a Trudinger-Moser Inequality with a Sign-Changing Weight\",\"authors\":\"Pengxiu Yu, Xiaobao Zhu\",\"doi\":\"10.1007/s11118-024-10159-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((\\\\Sigma ,g)\\\\)</span> be a closed Riemann surface, <span>\\\\(\\\\lambda _1(\\\\Sigma )\\\\)</span> be the first eigenvalue of the Laplace-Beltrami operator. Assume <span>\\\\(h:\\\\Sigma \\\\rightarrow \\\\mathbb {R}\\\\)</span> is some smooth sign-changing function. Using blow-up analysis, we prove that for any <span>\\\\(\\\\alpha <\\\\lambda _1(\\\\Sigma )\\\\)</span>, the supremum </p><span>$$\\\\sup _{\\\\int _\\\\Sigma |\\\\nabla _gu|^2dv_g-\\\\alpha \\\\int _\\\\Sigma u^2dv_g\\\\le 1,\\\\,\\\\int _\\\\Sigma udv_g=0}\\\\int _\\\\Sigma he^{4\\\\pi u^2}dv_g$$</span><p>is attained by some admissible function <span>\\\\(u_\\\\alpha \\\\)</span>. This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations </p><span>$$\\\\Delta _gu=8\\\\pi \\\\left( \\\\frac{he^u}{\\\\int _\\\\Sigma he^udv_g}-\\\\frac{1}{|\\\\Sigma |}\\\\right) ,$$</span><p>where <i>h</i> is a smooth sign-changing function. Such problems were extensively studied by L. Sun and J. Y. Zhu (Cal. Var. 2021; arXiv: 2012.12840).</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10159-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10159-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让((\Sigma ,g)\) 是一个封闭的黎曼曲面,\(\lambda _1(\Sigma )\) 是拉普拉斯-贝尔特拉米算子的第一个特征值。假设(h:\Sigma \rightarrow \mathbb {R})是某个平滑的符号变化函数。通过吹胀分析,我们可以证明对于任何 \(α <;\1(\Sigma )\), the supremum $$\sup _{int _\Sigma |\nabla _gu|^2dv_g\alpha \int _\Sigma u^2dv_g\le 1、\,\int _\Sigma udv_g=0}\int _\Sigma he^{4\pi u^2}dv_g$$ 是通过某个可接受的函数 \(u_\alpha \) 达到的。这概括了 Yang (J. Differential Equations 2015) 和 Hou (J. Math. ineq. 2018) 的早期结果。我们的结果类似于均值场方程的解的存在性 $$\Delta _gu=8\pi \left( \frac{he^u}{\int _\Sigma he^udv_g}-\frac{1}{|\Sigma |}\right) ,$$where h is a smooth sign changing function.L. Sun 和 J. Y. Zhu 对此类问题进行了广泛研究 (Cal. Var. 2021; arXiv: 2012.12840)。
Extremal Functions for a Trudinger-Moser Inequality with a Sign-Changing Weight
Let \((\Sigma ,g)\) be a closed Riemann surface, \(\lambda _1(\Sigma )\) be the first eigenvalue of the Laplace-Beltrami operator. Assume \(h:\Sigma \rightarrow \mathbb {R}\) is some smooth sign-changing function. Using blow-up analysis, we prove that for any \(\alpha <\lambda _1(\Sigma )\), the supremum
is attained by some admissible function \(u_\alpha \). This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.