{"title":"带有符号变化权重的特鲁丁格-莫泽尔不等式的极值函数","authors":"Pengxiu Yu, Xiaobao Zhu","doi":"10.1007/s11118-024-10159-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((\\Sigma ,g)\\)</span> be a closed Riemann surface, <span>\\(\\lambda _1(\\Sigma )\\)</span> be the first eigenvalue of the Laplace-Beltrami operator. Assume <span>\\(h:\\Sigma \\rightarrow \\mathbb {R}\\)</span> is some smooth sign-changing function. Using blow-up analysis, we prove that for any <span>\\(\\alpha <\\lambda _1(\\Sigma )\\)</span>, the supremum </p><span>$$\\sup _{\\int _\\Sigma |\\nabla _gu|^2dv_g-\\alpha \\int _\\Sigma u^2dv_g\\le 1,\\,\\int _\\Sigma udv_g=0}\\int _\\Sigma he^{4\\pi u^2}dv_g$$</span><p>is attained by some admissible function <span>\\(u_\\alpha \\)</span>. This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations </p><span>$$\\Delta _gu=8\\pi \\left( \\frac{he^u}{\\int _\\Sigma he^udv_g}-\\frac{1}{|\\Sigma |}\\right) ,$$</span><p>where <i>h</i> is a smooth sign-changing function. Such problems were extensively studied by L. Sun and J. Y. Zhu (Cal. Var. 2021; arXiv: 2012.12840).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Functions for a Trudinger-Moser Inequality with a Sign-Changing Weight\",\"authors\":\"Pengxiu Yu, Xiaobao Zhu\",\"doi\":\"10.1007/s11118-024-10159-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((\\\\Sigma ,g)\\\\)</span> be a closed Riemann surface, <span>\\\\(\\\\lambda _1(\\\\Sigma )\\\\)</span> be the first eigenvalue of the Laplace-Beltrami operator. Assume <span>\\\\(h:\\\\Sigma \\\\rightarrow \\\\mathbb {R}\\\\)</span> is some smooth sign-changing function. Using blow-up analysis, we prove that for any <span>\\\\(\\\\alpha <\\\\lambda _1(\\\\Sigma )\\\\)</span>, the supremum </p><span>$$\\\\sup _{\\\\int _\\\\Sigma |\\\\nabla _gu|^2dv_g-\\\\alpha \\\\int _\\\\Sigma u^2dv_g\\\\le 1,\\\\,\\\\int _\\\\Sigma udv_g=0}\\\\int _\\\\Sigma he^{4\\\\pi u^2}dv_g$$</span><p>is attained by some admissible function <span>\\\\(u_\\\\alpha \\\\)</span>. This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations </p><span>$$\\\\Delta _gu=8\\\\pi \\\\left( \\\\frac{he^u}{\\\\int _\\\\Sigma he^udv_g}-\\\\frac{1}{|\\\\Sigma |}\\\\right) ,$$</span><p>where <i>h</i> is a smooth sign-changing function. Such problems were extensively studied by L. Sun and J. Y. Zhu (Cal. Var. 2021; arXiv: 2012.12840).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10159-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10159-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
让((\Sigma ,g)\) 是一个封闭的黎曼曲面,\(\lambda _1(\Sigma )\) 是拉普拉斯-贝尔特拉米算子的第一个特征值。假设(h:\Sigma \rightarrow \mathbb {R})是某个平滑的符号变化函数。通过吹胀分析,我们可以证明对于任何 \(α <;\1(\Sigma )\), the supremum $$\sup _{int _\Sigma |\nabla _gu|^2dv_g\alpha \int _\Sigma u^2dv_g\le 1、\,\int _\Sigma udv_g=0}\int _\Sigma he^{4\pi u^2}dv_g$$ 是通过某个可接受的函数 \(u_\alpha \) 达到的。这概括了 Yang (J. Differential Equations 2015) 和 Hou (J. Math. ineq. 2018) 的早期结果。我们的结果类似于均值场方程的解的存在性 $$\Delta _gu=8\pi \left( \frac{he^u}{\int _\Sigma he^udv_g}-\frac{1}{|\Sigma |}\right) ,$$where h is a smooth sign changing function.L. Sun 和 J. Y. Zhu 对此类问题进行了广泛研究 (Cal. Var. 2021; arXiv: 2012.12840)。
Extremal Functions for a Trudinger-Moser Inequality with a Sign-Changing Weight
Let \((\Sigma ,g)\) be a closed Riemann surface, \(\lambda _1(\Sigma )\) be the first eigenvalue of the Laplace-Beltrami operator. Assume \(h:\Sigma \rightarrow \mathbb {R}\) is some smooth sign-changing function. Using blow-up analysis, we prove that for any \(\alpha <\lambda _1(\Sigma )\), the supremum
is attained by some admissible function \(u_\alpha \). This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.