利用深度神经网络研究伪星胶球的质量

Lin Gao
{"title":"利用深度神经网络研究伪星胶球的质量","authors":"Lin Gao","doi":"arxiv-2407.12010","DOIUrl":null,"url":null,"abstract":"A deep neural network (DNN) is utilized to study the mass of the pseudoscalar\nglueball in lattice QCD based on Monte Carlo simulations. To obtain an accurate\nand stable mass value, I constructed a new network. The results show that this\nDNN provides a more precise and stable mass estimate compared to the\ntraditional least squares method.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the mass of pseudoscalar glueball with a deep neural network\",\"authors\":\"Lin Gao\",\"doi\":\"arxiv-2407.12010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep neural network (DNN) is utilized to study the mass of the pseudoscalar\\nglueball in lattice QCD based on Monte Carlo simulations. To obtain an accurate\\nand stable mass value, I constructed a new network. The results show that this\\nDNN provides a more precise and stable mass estimate compared to the\\ntraditional least squares method.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在蒙特卡罗模拟的基础上,利用深度神经网络(DNN)来研究格子QCD中假鳞球的质量。为了获得准确而稳定的质量值,我构建了一个新的网络。结果表明,与传统的最小二乘法相比,这个深度神经网络能提供更精确、更稳定的质量估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the mass of pseudoscalar glueball with a deep neural network
A deep neural network (DNN) is utilized to study the mass of the pseudoscalar glueball in lattice QCD based on Monte Carlo simulations. To obtain an accurate and stable mass value, I constructed a new network. The results show that this DNN provides a more precise and stable mass estimate compared to the traditional least squares method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信