在冷原子设置中创建的 $\mathbb{Z}_N$ 对称哈密顿中的无间隙去约束相

Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda
{"title":"在冷原子设置中创建的 $\\mathbb{Z}_N$ 对称哈密顿中的无间隙去约束相","authors":"Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda","doi":"arxiv-2407.12109","DOIUrl":null,"url":null,"abstract":"We investigate a quasi-two-dimensional system consisting of two species of\nalkali atoms confined in a specific optical lattice potential [Phys. Rev. A 95,\n053608 (2017)]. In the low-energy regime, this system is governed by a unique\n$\\mathbb{Z}_N$ gauge theory, where field theory arguments have suggested that\nit may exhibit two exotic gapless deconfined phases, namely a dipolar liquid\nphase and a Bose liquid phase, along with two gapped (confined and deconfined)\nphases. We address these predictions numerically by using large-scale density\nmatrix renormalization group simulations. Our findings provide conclusive\nevidence for the existence of a gapless Bose liquid phase for $N \\geq 7$. We\ndemonstrate that this gapless phase shares the same critical properties as\none-dimensional critical phases, resembling weakly coupled chains of Luttinger\nliquids. In the range of geometries and $N$ considered, the gapless dipolar\nphase predicted theoretically is still elusive and its characterization will\nprobably require a full two-dimensional treatment.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gapless deconfined phase in a $\\\\mathbb{Z}_N$ symmetric Hamiltonian created in a cold-atom setup\",\"authors\":\"Mykhailo V. Rakov, Luca Tagliacozzo, Maciej Lewenstein, Jakub Zakrzewski, Titas Chanda\",\"doi\":\"arxiv-2407.12109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a quasi-two-dimensional system consisting of two species of\\nalkali atoms confined in a specific optical lattice potential [Phys. Rev. A 95,\\n053608 (2017)]. In the low-energy regime, this system is governed by a unique\\n$\\\\mathbb{Z}_N$ gauge theory, where field theory arguments have suggested that\\nit may exhibit two exotic gapless deconfined phases, namely a dipolar liquid\\nphase and a Bose liquid phase, along with two gapped (confined and deconfined)\\nphases. We address these predictions numerically by using large-scale density\\nmatrix renormalization group simulations. Our findings provide conclusive\\nevidence for the existence of a gapless Bose liquid phase for $N \\\\geq 7$. We\\ndemonstrate that this gapless phase shares the same critical properties as\\none-dimensional critical phases, resembling weakly coupled chains of Luttinger\\nliquids. In the range of geometries and $N$ considered, the gapless dipolar\\nphase predicted theoretically is still elusive and its characterization will\\nprobably require a full two-dimensional treatment.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.12109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个由两种碱原子组成的准二维体系,它们被限制在一个特定的光学晶格势中[Phys. Rev. A 95,053608 (2017)]。在低能制度下,该系统受独特的$\mathbb{Z}_N$规理论支配,场论论证表明它可能表现出两个奇异的无间隙去约束相,即双极液相和玻色液相,以及两个间隙(约束和去约束)相。我们利用大尺度密度矩阵重正化群模拟对这些预测进行了数值处理。我们的发现为 $N \geq 7$ 无间隙玻色液相的存在提供了确凿的证据。我们证明,这种无间隙相具有与一维临界相相同的临界性质,类似于弱耦合的鲁丁格液体链。在所考虑的几何和 $N$ 范围内,理论上预测的无间隙双极相仍然难以捉摸,它的表征可能需要完整的二维处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gapless deconfined phase in a $\mathbb{Z}_N$ symmetric Hamiltonian created in a cold-atom setup
We investigate a quasi-two-dimensional system consisting of two species of alkali atoms confined in a specific optical lattice potential [Phys. Rev. A 95, 053608 (2017)]. In the low-energy regime, this system is governed by a unique $\mathbb{Z}_N$ gauge theory, where field theory arguments have suggested that it may exhibit two exotic gapless deconfined phases, namely a dipolar liquid phase and a Bose liquid phase, along with two gapped (confined and deconfined) phases. We address these predictions numerically by using large-scale density matrix renormalization group simulations. Our findings provide conclusive evidence for the existence of a gapless Bose liquid phase for $N \geq 7$. We demonstrate that this gapless phase shares the same critical properties as one-dimensional critical phases, resembling weakly coupled chains of Luttinger liquids. In the range of geometries and $N$ considered, the gapless dipolar phase predicted theoretically is still elusive and its characterization will probably require a full two-dimensional treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信