二维贝里斯-爱德华兹系统的静水极限

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Xingyu Li, Marius Paicu, Arghir Zarnescu
{"title":"二维贝里斯-爱德华兹系统的静水极限","authors":"Xingyu Li, Marius Paicu, Arghir Zarnescu","doi":"10.4310/cms.2024.v22.n6.a11","DOIUrl":null,"url":null,"abstract":"We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"28 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hydrostatic limit of the Beris-Edwards system in dimension two\",\"authors\":\"Xingyu Li, Marius Paicu, Arghir Zarnescu\",\"doi\":\"10.4310/cms.2024.v22.n6.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n6.a11\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n6.a11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了模拟向列液晶二维流体力学运动的比例各向异性同向旋转 Beris-Edwards 系统。我们证明了在薄带域中以少量解析数据进行全局良好求解的可能性。此外,我们还证明了涉及静力学 Navier-Stokes 系统的分析数据的极限,并证明了收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hydrostatic limit of the Beris-Edwards system in dimension two
We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信