{"title":"二维贝里斯-爱德华兹系统的静水极限","authors":"Xingyu Li, Marius Paicu, Arghir Zarnescu","doi":"10.4310/cms.2024.v22.n6.a11","DOIUrl":null,"url":null,"abstract":"We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hydrostatic limit of the Beris-Edwards system in dimension two\",\"authors\":\"Xingyu Li, Marius Paicu, Arghir Zarnescu\",\"doi\":\"10.4310/cms.2024.v22.n6.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n6.a11\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n6.a11","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The hydrostatic limit of the Beris-Edwards system in dimension two
We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.