关于随时间变化的剪切流的增强耗散的说明

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Daniel Coble, Siming He
{"title":"关于随时间变化的剪切流的增强耗散的说明","authors":"Daniel Coble, Siming He","doi":"10.4310/cms.2024.v22.n6.a10","DOIUrl":null,"url":null,"abstract":"This paper explores the phenomena of enhanced dissipation in solutions to the passive scalar equations subject to time-dependent shear flows. The hypocoercivity functionals with carefully tuned time weights are applied in the analysis. We observe that as long as the critical points of the shear flow vary slowly, one can derive the sharp enhanced dissipation estimates, mirroring the ones obtained for the time-stationary case.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"13 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on enhanced dissipation of time-dependent shear flows\",\"authors\":\"Daniel Coble, Siming He\",\"doi\":\"10.4310/cms.2024.v22.n6.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the phenomena of enhanced dissipation in solutions to the passive scalar equations subject to time-dependent shear flows. The hypocoercivity functionals with carefully tuned time weights are applied in the analysis. We observe that as long as the critical points of the shear flow vary slowly, one can derive the sharp enhanced dissipation estimates, mirroring the ones obtained for the time-stationary case.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n6.a10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n6.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了受时变剪切流影响的被动标量方程解中的增强耗散现象。在分析中应用了经过仔细调整的时间权重的超矫顽力函数。我们发现,只要剪切流的临界点变化缓慢,就能得出尖锐的增强耗散估计值,这与时稳态情况下的估计值如出一辙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on enhanced dissipation of time-dependent shear flows
This paper explores the phenomena of enhanced dissipation in solutions to the passive scalar equations subject to time-dependent shear flows. The hypocoercivity functionals with carefully tuned time weights are applied in the analysis. We observe that as long as the critical points of the shear flow vary slowly, one can derive the sharp enhanced dissipation estimates, mirroring the ones obtained for the time-stationary case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信